北九州市水道局
上向流式生物接触ろ過施設 [穴生浄水場] の
施設概要と運転事例

生活排水や湖沼の高栄養化などのために、水道原水の水質にアンモニア性窒素や界面活性剤の増
加、カビ臭などの異臭味の発生や溶存マンガン濃度の上昇といった問題が起こる場合がある。
北九州市水道局ではこれらの対策に粒状活性炭を用い、生物の力を利用した上向流式生物接触
ろ過池を穴生浄水場の前処理設備として設置し、アンモニア性窒素は0.3ppm、溶存マンガンは0.05
以上の除去率がえられている。また塩素、凝集剤および炭酸ガスの使用量も削減できた。さらに上
向流式生物接触ろ過設備は高濃度の影響を受けるにくいことが確認された。

Key Words:
上向流式生物接触ろ過池
粒状活性炭
アンモニア性窒素
溶存マンガン

まえがき
北九州市水道局は、主要水路である遠賀川の水質
悪化に対し、「より安全で良質な水への取り組み事
業」として種々の設備を導入されてきた。
その一つとしてカビ臭原因物質、アンモニア性窒
素、溶存マンガンの除去、トリハロメタンの生成物
質である有機物や陰イオン界面活性剤の低減を目的
とした粒状活性炭をもちいた高度浄水処理施設とし
て上向流式生物接触ろ過施設を建設され、北九州市
水道局本城浄水場では2004年8月7日より、さらに、
穴生浄水場では2004年6月15日より供用を開始して
いる。
当社はこれらの上向流式生物接触ろ過施設の機械
設備の建設を担当し、本城浄水場、穴生浄水場とも
現在順調に稼働している。
本報ではとくに穴生浄水場の上向流式生物接触ろ
過設備の特長、概要および運転状況について報告す
る。
1. 上向流式生物接触ろ過方式
本施設は、河川に存在する微生物の自然浄化作用を利用した生物接触ろ過方式を採用している。これは、原水が生物接触ろ過池の接触ろ過層を通過する際に、微生物が付着繁殖したろ材と原水が接触することによって、微生物の作用でアンモニア性窒素、溶存マンガン、臭気物質、陰イオン界面活性剤などの溶解性物質を取り除く方式である。

本施設では、微生物を付着繁殖するろ材として、小粒径の粒状活性炭をもちいている。

通水方式は、水道原水を直接通水した場合には一般的に実施されている下向流式では、原水中の穏流により接触層表面が詰まりろ過が不能を起こすため、通水順に通水する上向流式を採用している。さらに、通水速度を大きくして接触ろ過層を膨張させた流動状態（流動床）とし、生物接触ろ過池内の穏急捕捉を抑制しようとしている。

上向流式生物接触ろ過方式の特長を次に示す。① 流動床であるため、接触層全体を有効に利用でき、生物処理効率が良い。
② 小粒径の活性炭を利用して、ろ材の表面積が大きくとれ、生物の付着量が多く生物処理効果が高まる。
③ 付加的な要素として、活性炭層が付着した生物により再生することができますので、吸着材としての能力が長期にわたり期待できる。
④ 上向流であるため、流速が低く原水を速い通水速度（0.5m/s）で接触することができるため、施設の設置面積を小さくできる。
⑤ 穏流捕捉量が少ないため、損失水頭が必要な運転が可能となる。汚泥使用の水位の上昇が少なく低い水位差で運転できるため、自然流下方式が採用できる中間ポンプなどの機器が必要になる。
⑥ 原水を直接生物処理することで、アンモニア性窒素などが生物酸化され、前塩素や中間塩素処理で注入する塩素量の低減がえられる。

2. 施設概要
施設フローを図1に示す。穴生浄水場には原水が4系統から流入し、最大5000m³/hの処理をおこなっている。原水は着水井戸流入した後、混合池、フロック形成池、薬品添加池を経て、急速ろ過池でろ過されて浄水池へと送水される。浄水池の混合池では懸濁物のほかにDDA系に炭酸ガスを、急速ろ過池の前後には中塩素、後塩素を注入している。

生物接触ろ過施設は水処理場の前処理設備として設置される。浄水場への流入管から分岐した原水が生物接触ろ過施設で生物処理された後、既設着水井戸流入する。

生物接触ろ過施設の全体を写真1に示した。また、

写真1 穴生浄水場 生物接触ろ過施設全景（北九州市水道局 穴生浄水場パンフレットから引用）
図2 穴生净水場高度净水施設全体フロー図（ろ過，空気フロー）

図3 穴生净水場高度净水施設全体構造図

図4 上向流式生物接触ろ過池構造図

生物接触ろ過施設の全体フローを図2に、全体構造図を図3に、生物接触ろ過池の構造図を図4に示した。

水道原水は既設净水場への4系統の配管よりそれぞれ分岐し、生物接触ろ過施設の流入井に導かれる。この流入井には魚やビニール片などが生物接触ろ過池内に流入しないよう、除塵プロワを空気を送り微細気泡によるエアーコーティングを設置している。

エアーコーティングによりスクリーニングされた原水は流入渠に入下部の圧力渠から下部配水装置（気水洗浄型多孔板）により均等分配され、支持砂利層、接触ろ過層（生物活性炭層）を通じて生物処理される。

処理水は上部トラフで集水され流出渠から流出井を経て、流出管により既設着水井へと送られる。

本施設は下部配水装置や支持砂利層に少量の濁質が捕捉される。さらに、接触ろ過層だけでなく下部
配水装置や支持砂利層にも生物が繁殖するようにな るため、通水継続とともに損失水頭が上昇する。そ のため、一定時間毎に洗浄をおこなう必要がある。
洗浄は「空気」洗浄→「空気＋水」洗浄→「水」 洗浄をおこない、濁質や付着生物の一部を効率よく 生物接触過池の系外に排出する。
また、本施設では本城浄水場の運転実績を背景と して次の改良をおこなっている。

① 水洗装置の水抜き箇所を1箇所から4箇所とし、 洗浄工程の水抜き工程において、池内の水抜きの 過間を短縮している。
② 洗浄排水については、弁の切り替えで高濃度の 排水は濃縮槽へ、低濃度の排水は流入井又は受水 池に戻るようにしている。
③ 洗浄工程における「水洗浄→水抜き」工程は生 物接触過処理水濃度によって、2回の繰返しま で追加することができる。これにより、洗浄によっ て剥離した濁質を排水する回数を増やすことができ、後段の混濁沈澱処理に負荷を与えないように している。
④ 近隣民家への騒音を考慮して、プロロをルーツ 型からターボ型へ変更し、また屋外の水路に覆蓋 を設けている。
⑤ プロロをターボ型にすることでバルブの開度調 整が可能となり、空気洗浄の風量調整をインパータ制御から弁開度制御に変更している。

2.1 設計諸元
処理水量：最大 80000m³/日
池 数：11池
池 深 度：1200mm
池 面 積：1113.0m²
通水速度：0.01

2.2 接触ろ過層仕様
種 類：黒炭系粒状活性炭（破碎炭）
有 効 径：3.0〜0.35mm
均等係数：100〜25
充填密度：11.0〜11.1kg/m³
充填層高：1400mm（1200mm/池）

2.3 洗浄方法
洗浄方式：気水洗浄
洗浄工程：排水→水抜き→空気洗浄→気水洗浄→ 水洗浄→水抜き

3. 施工仕様
3.1 下部配水装置
型 式：気水洗浄型多孔板式 （〇型 式有孔パネル）
表 1 生物接触ろ過施設による除去（神鋼環境ソリューション分析）

| 項 目 | 水温8°C | 15°C | 20°C | 本城浄水場
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>水質</td>
<td>原水</td>
<td>処理水</td>
<td>除去率</td>
<td>原水</td>
</tr>
<tr>
<td>アンモニア性窒素</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>100</td>
<td>< 0.05</td>
</tr>
<tr>
<td>溶解性マンガン</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>100</td>
<td>< 0.05</td>
</tr>
<tr>
<td>濃度</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>100</td>
<td>< 0.05</td>
</tr>
<tr>
<td>塩素</td>
<td>0-1</td>
<td>0-1</td>
<td>100</td>
<td>0-1</td>
</tr>
<tr>
<td>色度</td>
<td>0-1</td>
<td>0-1</td>
<td>100</td>
<td>0-1</td>
</tr>
<tr>
<td>硝酸性窒素</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>100</td>
<td>< 0.05</td>
</tr>
<tr>
<td>亜硝酸性窒素</td>
<td>< 0.05</td>
<td>< 0.05</td>
<td>100</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

図 5 原水濁度と損失水頭

図 6 アンモニア性窒素の年間の処理性（北九州市水質試験所分析）

図 7 溶存マンガンの年間の処理性（北九州市水質試験所分析）
表2 年間の平均濃度と除去率の平均値
（2003年4月～2004年3月 北九州市水質試験所分析）

<table>
<thead>
<tr>
<th></th>
<th>原水</th>
<th>生物接触処理水</th>
<th>除去率の平均値（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>アンモニア性窒素</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>硝酸性窒素</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>溶存マンガン</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>臭気強度</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>溶度</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>過マンガン酸カリウム消費量</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>陰イオン界面活性剤</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
| の除去物質の平均濃度と除去率の平均値を表2に示した。
アンモニア性窒素は、冬季の最大0.00 mg/Lの原水水質においても生物接触処理水には検出されず、年間除去率の平均は0.00%であった。溶存マンガンは、年間の原水の変動に対しても除去率の平均は0.00%であった。アンモニア性窒素、溶存マンガンともに年間を通じても、原水水質の変動に対し良好で安定した処理性能を示していることがわかった。さらに臭気強度や陰イオン界面活性剤の除去率の平均値はそれぞれ0.00%，0.00%と良好な除去性能が確認された。

むすび

粒状活性炭をもちいた上向流式生物接触処理方式により、水道原水の生物処理性能が確認できた。さらに浄水施設全体として塩素、凝聚剤および炭酸ガスの使用量の減少も確認でき、設備の維持管理性の向上に寄与できた。

本報告にあたり、データの提供を含め多大なご協力をお願いいたしました北九州市水道局殿に深く感謝致します。

【参考文献】
1）中町真美ほか：神鋼パンテック技報 2005年 2月号