深層曝気装置による貯水池の水質改善

Improvement of Impounded Water Results Achieved by Use of Hypolimnetic Aerator

Installation of hypolimnetic aerators was found to be effective in supplying dissolved oxygen to the hypolymnion of a reservoir which was suffering from eutrophication. The water quality was much improved as a result prevented leaching of NH_4^+ , PO_4^{3-} , Mn^{2+} , etc. out of benthal deposits without disturbing thermal stratification.

まえがき

一般に河川の下流流域に沿って開発の進んだ都市部から みると,かなり上流流域に位置して,最近までは比較的清 澄な水質の水が得られるとされていた湖沼やダム,貯水池 でさえも,近年の都市化スプロール現象の影響は避けられ ず,さらに上流部に開発された地域から生活排水,工場排 水,農業排水などが流れ込むこととなり,自然の浄化能力 を上まわる汚濁物,栄養塩類が貯水池内に蓄積されて,富 栄養化への過程を急ピッチにたどりつつある。

本来, 富栄養化現象は, 自然界の生物代謝活動の結果と して, 数百年から数千年の年月をかけて徐々に変遷してい くものとされていたが, 近年人類による生産活動の活発化 により, 湖沼などに排出される栄養塩類が急激に増加する こととなり, その結果, 栄養塩類濃度の増加と共に植物性 プランクトンの異常発生をはじめ水質汚濁の問題を引き起 こすこととなった。

以上のような現象も富栄養化と呼ぶが,長年月の自然要 因による富栄養化と区別するために,人為的富栄養化と呼 ばれている。現在われわれが問題とする富栄養化は,ほと んどがこの人為的富栄養化であるといってよい。

このような状況から湖沼・ダム・貯水池などの水質を守 りあるいは改善するために,種々の方策が各方面でとられ ているところであり,その詳細については以前に本技報¹⁾ で紹介したことがある。それによると大別して,

(1)流域対策 :汚濁発生負荷を源から抜本的に削減す る方法(例:下水道の完備)。

(2)貯水池内対策:貯水池内に蓄積した汚濁物 を 除 去 す る。あるいは,水質を改善する方法。 の2方式がある。

今回, 貯水池内対策として, 最も効果があるといわれて いる深層曝気装置を, 神戸市千苅貯水池向けに納入したの で, その運転結果, 水質改善の効果などについて報告する。

1. 深層曝気循環法

貯水池の曝気および循環法には,主に次の2方式がある が,本報では2)深層曝気循環法について紹介する。

1) 全層曝気循環法

貯水池全体を撹拌混合する方法で、表層と底層の温度差 がほとんどなくなることから、温度躍層を破壊することに なり、成層破壊法ともいわれている。本方式の特長は、貯 水池全体の撹拌によって底層部へ酸素を供給することによ り、底質から栄養塩類、Fe, Mn などの溶出を防止して、 底層水の水質改善を行うのみならず、表層部に発生する植 物プランクトンを日光の届かない底層部に移動させて、そ の増殖抑制に寄与することである。その模式的な設置例を 第1図に示す。

なお,当社では大阪府滝畑 ダムや 近畿農政局呑吐 ダム (兵庫県)などに本方式による本格的な実装置を納入し, 好成績を収めている。

2) 深層曝気循環法

深層曝気循環法は、スイスの湖で初めて採用され、その 後、主に欧米で発展してきた。本法は温度躍層を破壊しな いで底層部に直接酸素を供給する方法である。このため底 層部の低温がそのまま維持されるので、自然の生態系に大 きな影響を与えず、たとえば冷水魚の増殖に効果があるた め、欧米のニーズ(釣りなどのリクレーション)に適した 方法であるといわれている。

第1図 全層曝気装置の設置例 Fig. 1 An overall aeration system

神鋼パンテツク技報

Vol. 34 No. 3 (1990/12)

第2図 深層曝気装置(エアリフト型,西ドイツ) Fig. 2 A full air lift, hypolimnetic aerator used in Wahnbach Reservoir, West Germany (Bernhardt, 1974)

写 真 1 深層曝気装置(アクアマージ) **Photo. 1** Hypolimnetic aerator (AQUA-MARGE)

わが国で既に稼働している深層曝気装置は,1984年に多 目的ダムの一庫ダム(兵庫県)に設置されたものが唯一で あった。本装置は,西ドイツの Wahnbach 貯水池に設置 されたのと同型(**第2図**)である。

ここでは常用洪水吐から放流する際の硫化水素臭の発臭 防止が目的であった。

一方,今回当社が開発し,神戸市の千苅貯水池に納入し た深層曝気装置は全水没型で,水面上に浮かぶ台船や装置 頂部を極力少なくして,景観や船の航行に支障がないよう に工夫している。

本深層曝気装置は**写真1,第3図**に示すような二重円筒 形の水没式エアーリフト装置である。

その構造は陸上に設置したコンプレッサーからエアーホ ース(H)を通じて、貯水池底部近くに設置したエアーディ フュザー(G)に空気を供給すると、空気は深層曝気装置内 筒(E)を上昇する際、水中に一部が溶解し、酸素を供給す るだけでなく、エアーリフト効果によって大量の底層水を 揚水することができる。揚水された底層水は深層曝気装置 外筒(D)を下降し、循環水出口(F)から**第3**図に示す矢印 に沿って、広い範囲に拡散されるので、その溶存酸素の作 用で底層部全域の水質を改善することができる。

一方,溶解せずに循環装置内に残留した空気は,排気用 ホース(C)を通じて排気口(A)に排出されるので,上層の 水域を撹乱することはない。また本装置は底層部深く設置 されるので,上層部は温度躍層を保持したまま静止してい る。

ところで神戸市千苅貯水池は、有効水深27.4m,有効貯

- A : Air vent B : Water return hose C : Air vent hose D : Circulation tube
- E : Water drafting tude
- F : Effluent
- G : Air diffuser
- $H: Air \ hose$

第3図 水没式深層曝気装置 Fig.3 Hypolimnetic aerator

水量1161万m³の水道専用貯水池で,最近は栄養塩や有機 汚濁物の負荷量の増加により富栄養化の兆侯が見られるよ うになってきた。また,夏の成層期には底層部の溶存酸素 が減少するため,底質から栄養塩だけでなく,鉄やマンガ ンの還元溶出も見られるようになった。

本貯水池では水深ごとに任意に選択取水が可能なため, 特に全層曝気を行わず,底層部分の水質改善と富栄養化防 止を目的に,底層部に直接酸素が供給できる深層曝気法を 採用することになった。

貯水池内には**第4図**に示すような要領で,堰堤から上流 に向かってそれぞれ水平距離にして約150,650,1150そ して2000mの位置に1基ずつ合計4基の深層曝気装置を 設置した。

なお、本装置の仕様の概要は次に示すとおりである。

深層曝気装置の仕様

設備名称	任	様 数	量
深層曝気 装 置	形式:全水没式 要部材質: 寸法:装置外筒径 1600φ 内筒径 500φ 本体筒長 13, 10, 8. 5	F R P 4 5, 7 m	基
形式:空冷パッケージ形オイルレスねじ式 空気圧縮機 容量:3000 ℓ/min×7 kgf/cm ² 200 V×22 kW×2 p		ルレスねじ式 ² 2	台

深層曝気装置の揚水特性

2.1 揚水量をもとめる理論式

深層曝気装置を設計するには、その揚水特性(循環水量) を把握する必要がある。エアリフト方式における揚水量を 求める理論式は、(1)式に示すとおりで、本式はエネルギー 収支から導かれる。

第4図 循環装置設置位置 Fig. 4 Setting points of aerator in Sengari reservoir

第5図 ドラフト径と係数値 Fig. 5 Draft dia. vs. coefficient

$$\mathbf{Q}_{\mathbf{w}} = \alpha \times \frac{\mathbf{Q}_{\mathbf{G}}}{\mathbf{h}_{\mathbf{e}}} \times \ln\left(\frac{\mathbf{P}_{\mathbf{1}} + \mathbf{H}}{\mathbf{P}_{\mathbf{1}}}\right) \times \eta \tag{1}$$

ここに,

Q_{w}	:揚水量	(m³/h)
$\mathbf{Q}_{\mathbf{G}}$:吹込ガス量	(m³/h)
\mathbf{H}	:ガス吹込深さ	(m)
P_1	:ガス吸込状態絶対圧力	(m)
\mathbf{h}_{e}	:揚水抵抗	(m)

第6図 ドラフト管内流速と Qw/Qg Fig. 6 Qw/Qg vs. velocity in draft tube

本(1)式中の揚水抵抗 h。は,ドラフト管(**第3図**では、 E:深層曝気装置内筒部のこと)の入口での摩擦損失,残 存速度水頭に等しいと考えられ,管内流速の関数として(2) 式で示される。

$$\begin{aligned} h_{e} &\propto U^{2} \\ &\propto Q_{w}^{2}/D^{4} \end{aligned} \tag{2}$$

D:ドラフト管径(m)

しかしながら当社におけるガスリフト装置の揚水特性水 理実験より得られた結果³⁾では,揚水量はガス吹込深さH よりドラフト内のガス吹込深さH_Dに強い相関があるとし ており,今回の本装置の設計でも,(1)式は適当でないと判 断し,このガスリフト装置の揚水特性水理実験より得られ た次の実験式(3)式を基準にした。

$$Q_{w} = X \times Q_{G}^{Y} \times \left\{ ln \left(\frac{P_{1} + H_{D}}{P_{1}} \right) \right\}^{Z}$$
(3)

X, Y, Z:ドラフト管径の関数

2.2 実装置の揚水量

揚水量の測定は,設置した4基のうち1号機(H_{D} =11.5 m)と4号機(H_{D} =5.5 m)に流速計を取り付け,吹込ガス量を種々変化させて行った。ガスリフト装置の揚水特性 水理実験より得られたX,Y,Zなどの係数値は第5図に 示すとおりである。

本装置の測定結果からみて,係数Xを補正すれば,(3)式 と測定揚水量はほぼ一致した。

補正比は実験値1にたいして測定値は0.45となったが, これは揚水抵抗が実装置の場合実験装置よりも大きく,そ の影響が出たためと考える。

第6図にはドラフト管内流速とQw/Qaの関係を示した。 以上の結果から,揚水量を効率良く増大するためには,ド ラフト管径がある程度大きく,ドラフト管長も長いほうが 良いといえる。

3. 運転結果³⁾

本運転の結果,底層部の循環を行うことにより,貯水池内の水温や溶存酸素の分布の様子は次に示すようになった。

3.1 水温

深層曝気装置設置前と後の貯水池内のある 地点での水温の分布状況は**第7図**に示すとお りである。

貯水池表面の年間の水温は5~30°Cまで 大幅に変動するが水深25m以下の底層部は 年間を通じて5~6°Cの冷水となっている。

曝気装置の設置前には水温躍層は通常4~ 5月に形成され始め、その後夏季に向かうに 従って上層と下層の2ヵ所で2層化傾向が顕 著に現れていた。この水温躍層は12~1月に かけて消滅し自然対流による循環期に入った。

水温躍層の位置は季節により変動し,春期 は水深4~7mの位置で,夏期の2段躍層形 成時には水深数mと10数mの位置に形成され る。秋期は2次躍層が消滅して1次躍層のみ が表層から10数mの位置に残るが,冬期には これも消滅して上下層が循環混合することと なる。

一方,曝気装置設置後の水温躍層の形成は 装置設置前の1次躍層の位置が数m下がった 程度で,設置前のパターンとほとんど同じで あった。これらの測定結果から判断して深層 曝気装置による底層部の循環を行っても,貯 水池内の成層破壊は全く起こらなかったとい える。

3.2 溶存酸素

(

一般に貯水池の場合,上層部では植物プラ ンクトンによる光合成(酸素生産)が活発に 行われ,逆に下層部では沈降してくる有機物 の分解(酸素消費)が活発に行われる。

一方,夏季の水温上昇に伴って水温の成層 が見られるので,その結果,上層部の溶存酸 素(以下DOと称す)は過飽和となり,下層 部は無酸素状態になると予想される。

深層曝気装置を設置する前後の貯水池内の ある地点での,深度ごとのDOを月を追って 観測した結果は**第8図**に示すとおりである。

設置前の状況は、冬期の循環期には深水層 にまで十分なDOが見られたが、水温躍層が形成されるに つれて深水層域のDOは2~5 mg/ℓ まで減少した。そして 夏期には予想されたとおり、上層部のDOは過飽和にな り、底層部は冬期の循環が起こるまでのあいだ無酸素状態 が続いた。

なお、循環装置運転開始直前の下層循環水域(底部~水 深22 m)のDOは3.3~6.5 mg/ℓであった。そして運転 開始後約30日で酸素の供給および循環作用によってDOは やや増加したものの、その後減少傾向が見えたので、7~ 8月に入って循環装置への空気供給量を増量したところ、 下層循環水域でDOの増加が認められ、10月にはその飽和 率が27%になった。第9図に示すとおり、堰堤から上流 2000 mまでの底層水の無酸素状態はまったく解消され、 目標値の5 mg/ℓまでには至らなかったが好気的状態は保 持できた。これは3.1項の水温に示したように躍層が破壊

第8図 循環装置設置前後の溶存酸素飽和率(%)の鉛直分布

Fig. 8 Vertical distribution of DO saturation degree before and after setting up aerator

されていないことから考えて,本装置による底層部への空 気の供給が酸素の消費量を上回った結果と考えられる。

3.3 水質の改善

淡水は4°Cにおいて比重1を示し,それ以上・以下の 水温では比重は1以下となる。このような性質上,貯水池 では水温の上昇・下降に伴い,鉛直方向への水の循環と停 止を繰り返し,年間の鉛直循環サイクルを形成している。 このような貯水池の鉛直循環サイクルに伴い水質も大きく 変化する。

一般に夏の成層期の貯水池底層ではDOの低下と、これによるNH₄⁺, PO₄³⁻, Fe²⁺, Mn²⁺などの底泥からの溶出が起こり、貯水池の水質を著しく悪化させることになる。ところが本装置の設置で酸素が供給されることにより、水質改善の効果が明らかになった。

第10,11図に示すとおり、底層水中に過去10数 mg/ℓ も

第9回 溶存酸素飽和率分布縦断図(%) Fig. 9 Longitudinal section of DO saturation degree (%)

還元溶出していた NH4⁺ や Mn²⁺が本曝気装 置の運転により抑制されている。

これらのことから本装置の運転制御は,底 層水のDO濃度の管理で行える。ただ,最小 DO維持濃度については,不明であるが,こ のたびの調査では栄養塩濃度が通年の夏から 秋にかけて上昇するパターンとは逆に,減少 傾向にあるため現状では,DO1~3 mg/ℓ以 上が制御目標と推察される。

この結果をふまえ,今後はDO濃度と溶出 との関連および,貯水池全体の水質との相関 を長期的にとらえ,貯水池の富栄養化制御法 としての深層曝気の効果を確認する必要があ る。

むすび

わが国において実施例の少なかった深層曝 気装置について、特に今回当社が開発した水 没式深層曝気装置の納入事例から、揚水特性 や水質改善に関するデータが得られたことは、 この種の装置の今後の合理的な設計に寄与す るものである。この実績を生かして今年度、 より大型の第2号機を建設省主管の多目的ダ ム(総貯水容量1600万 m³)に納入し1990年 7月より運転開始しており、その水質保全効 果が期待されている。

最後に本装置の納入,運転にあたり多大な るご指導,ご協力をいただいた神戸市水道局 の方々に感謝の意を表します。

〔参考文献〕

- 1) 神鋼フアウドラー技報 Vol. 32, No. 1 (1988)
 p. 35
- 2) 神鋼フアウドラー技報 Vol. 27, No. 3 (1983) p. 61
- 3)酒井茂喜(神戸市水道局):千苅貯水池における 底層水循環装置による水質改善(1),第40回全国 水道研究発表会講演集(1989) p. 469

神鋼パンテツク技報