

次

CONTENTS

1	電気的機能性ガラス	The Electric Functional Glasses
6	フルゾーンの流動・混合特性	Flow Structure and Mixing Char Stirred with FULLZONE Impeller
10	PMX-98 電力デマンド監視への適用例	PMX-98 Application to Monitori of Electric Power
16	高粘度液用薄膜蒸発機「エクセバ」の スケールアップ	Scale-up of the Thin-Film Evapor Viscous Products
20	無電解Ni めっきの圧力容器への適用	Apply to the Pressure Vessels of
26	コボール・ミルの粒子微細化特性	Study on Particle Size Reduction
29	嫌気処理におけるシリンジテスト	A Syringe Test Method for And
34	浄水場における回収水の浮上分離	A Recycle Water Floatation Me Treatment Facility
38	生物接触沪過法による水道原水の前処理	Pretreatment of Municipal Wate Filtration (BCF)
42	FRP製冷刧塔の開発	Development of FRP Cooling 1

47 社内ニュース

acteristic in a Vessel

ng Maximum Demand

rator EXEVA for High

of Electroless Plating

by CoBall-Mill

aerobic Treatment

thod in Water

er with Biocontact

lowers

TOPICS

〈写真説明〉 ハイロフ・ドライヤーは、当社が開発した、反応・晶析・ 沪過・乾燥が一台で行える多機能型の装置です。一連の処理 を密閉容器内で処理できるため、高純度医薬品などの生産プ ロセスに最適な装置として、発売以来注目されています。 このたび、グラスライニング製のものとしては、世界最大ク ラスのRF-1200(沪過面積 1.1 ㎡)を納入しました。 クリーンルーム内に設置され医薬品製造の最終工程で使用さ れ、沪過と真空乾燥が一台の密閉容器内で行えるという利点 を生かし、一連の処理を無人・全自動で行っています。

Hi-ROF dryer, developed by Shinko Pantec, is a multifunctional apparatus capable for carrying out reaction, crystalization and drying in a single vessel.

After putting it on sale, Hi-ROF dryer atracts attention as the most suitable apparatus for such as in a process of phermaceutic production, because series of treating process can be confined in a closed vessel.

Lecently, we have delivered world largest class RF-1200 having 1.1 m² filtration area.

The apparatus, installed in a clean room and provided in the last stage of phermaceutic production line, is operated automatically making use of the merit of carring out a treatment of filtration and vacuum drying in a closed vessel.

電気的機能性ガラス

The Electric Functional Glasses

The new glass which has the high dielectric constant was developed for the discharge electrode. The effect of components for the dielectric constant of glass was investigated. As a result, it was found that rare earth metals, especially Gd_2O_3 and Sm_2O_3 , improve the dielectric constant of glass remarkably. In this paper, the effect of rare earth metals for the dielectric constant of glass is outlined.

まえがき

近年,光学的・電気的・磁気的・機械的・化学的・熱的 など種々の機能性ガラス (ニューガラス) が数多く発表さ れ,また実用化されている。当社においても従来より各種 機能性ガラスの開発を行ってきている。今回,フィルム表 面処理用のトリーターロールなどの無声放電を利用したグ ラスライニング製放電電極用高誘電率ガラスの開発を行っ たので,他の電気的機能性ガラスとあわせてここに紹介す る。

1. 電気的機能性ガラス

現在ガラス製品として市場に出ているものには,理学器 具,瓶・板ガラス,眼鏡などのガラス本来の性質の透明性 や耐食性を利用したものが多い。しかしこれらと異なり, 超イオン導電性ガラス,生体適合性ガラス(人工骨・歯な ど),多孔性ガラス(フィルタ)など機能を極限まで発揮さ せたガラスを機能性ガラス(ニューガラス)という。機能 性ガラスの代表的な機能とその利用例を**第1表**に挙げる。

いくつかの電気的機能性ガラスを次に紹介する。

1)超イオン導電性ガラス

ガラスは通常絶縁物であるが 10^{-2} S/cm オーダーの電気 伝導度を有する ガラスが 開発 されている。 AgI-MoO₃-Ag₂O 系, AgI-Ag₂O-P₂O₅ 系などの ガラスが そうであ り、これらは Ag⁺ が伝導のキャリアーである。これから 先に、Li を含有する 超イオン導電性ガラスが 開発されれ ばそれを固体電解質とした小型電池など実用化へ大きく進 むものと思われる。

2) エレクトロクロミズム

光があたると着色するフォトクロミズムと同様に,電場 をかけると着色するガラスがエレクトロクロミズムガラス である。酸化タングステン(WO₈)がガラス状態のとき電 子と水素イオンの両方が同時にWO₈中に入って,HxWO₈ (着色ブロンズ)を形成すると発色する。一部自動車用窓 ガラスの遮光に取り入れられている。

2. 電気的機能性グラスライニング用ガラス 今回開発したグラスライニング用高誘電率ガラスおよび 従来製品である pH ガラス,以前に開発研究した導電性ガ ラスについて紹介する。

2.1 グラスライニング製放電電極用高誘電率ガラス

トリーターロールはグラスライニングしたロール間に無 声放電を起させ、その放電エネルギーを利用し印刷性向上 などのフィルムの表面処理を行うものである。また、消毒 ・脱臭などに利用するオゾンを発生させるオゾナイザーも 同様に無声放電を起させ、その放電エネルギーを利用し酸 素からオゾンを発生させている。第1図に二重円筒管型の 断面構造模式図を示す。これらの製品はその放電エネルギ ーが大きいほど、処理効率や発生効率が大きくなる。その ためには、電極面積を大きくする、誘電体(ガラス)の誘 電率を大きくする、印可電圧を高くすることなどの方法が ある。印可電圧を高くするとランニングコスト up および 装置の大型化を招き、電極面積を大きくすることも同様の

第 1 表 機能性ガラスとその用途 Tabel 1 Functional glasses and their applications

Function	Application	
Optics	Optical fibers Photo-chromic glasses Laser glasses	
Electronics	Superionic conducting glasses : Solid electrolyte Delayline glasses : Parts for VTR	
Mechanics	Machinable glasses : Parts for machinery High-strength glasses : Glasses for spectacles, bottles	
Chemistry	Alkali-resistant glasses : GRC (Glass reinforced cement) Porous glasses : Membrane	
Thermal	Super-low thermal expansion glass : Super-precision parts Thermal-resistant glasses : Thermal-resistant tile	
Biology	Glass-ceramics (Apatite) : Artificial bone, tooth	

第1図 オゾン発生用放電電極構造模式図 Fig. 1 The schematic structure of glass coated discharge electrode for ozone generator

第2図 誘電率と周波数の関係(15Na2O-15CaO-70SiO2-3Gd2O3系)

Fig. 2 Relationship between dielectric constant and frequency (at $15Na_2O{-}15CaO{-}70SiO_2{-}3Gd_2O_3$ system)

- 第3図 tandと周波数の関係(15Na2O-15CaO-70SiO2-3Gd2O3系)
- Fig. 3 Relationship between $tan\delta$ and frequency (at $15Na_2O{-}15CaO{-}70SiO_2{-}3Gd_2O_3$ system)

結果を招く。ガラスの誘電率を上げると,放電エネルギー 密度を上げることが可能である。したがって,放電エネル ギー密度が上がっただけ放電エネルギーがあがり処理効率 などを上げることが可能になる。

以上の点からライニング用高誘電率ガラスを開発した。

2.1.1 実験および結果

アルカリ,アルカリ土類,希土類について誘電率に及ぼ す影響を調べるためにライニング用ガラス組成に近くかつ 単純な組成である 15 Na₂O-15 CaO-70 SiO₂(mol%)のガ ラスに各元素の酸化物を 3 mol% 添加したときの誘電特性

- ϵ_0 : Dielectric constant of $15 Na_2O\text{-}15 CaO\text{-}70 SiO_2~(mol\%)$ base glass
- ϵ : Dielectric constant of $15Na_2O{-}15CaO{-}70SiO_2{-}3R_2O$ (RO, R_2O_3) (mol%) glass
- 第4図 添加元素と誘電率向上効果の関係
- Fig. 4 Relationship between $\varepsilon/\varepsilon_0$ and additional element (1A, 2A, 3A)

第2表 E-31 ガラス物性 Tabel 2 The physical property of E-31 glass

Tabel 2 The physical	property of E-5.	L glass
Glass No.		E-31
Dielectric constant tan δ Thermal expansion Firing temp.	17 0.004 107*10 ⁻⁷ /°C 570°C	(at 25°C 100 kHz) (at 25°C 100 kHz) (50-400°C)

(誘電率, tan δ) を測定した。測定は25 °C 1 kHz-1 MHzに てベクトルインピーダンスアナライザー (YHP製 HP4192 A)を使用して行った。3 mol%ガドリニウム (Gd) を添加 したガラスについて 誘電率および tan δ の 周波数依存性 を第2図および第3図に示す。周波数増加と共に若干誘電 率は減少し,また tan δ についても周波数増加と共に減少 した。その他の元素についても同様の結果が得られた。次 に,第4図に1 kHz での誘電率の向上率(添加後の誘電率 /添加前の誘電率)を縦軸にとった グラフを示す。図から 誘電率に関して希土類の向上効果が大きいことがわかる。 そのような結果を考慮し,試作したガラス E-31 の結果を 第2表に示す。

通常の ライニング用ガラス の 誘電率は 7 前後 であるから, E-31 で約2.4 倍である。このガラスは上引きガラス であり,現在次のような理由により下引きガラスを検討中 である。

2.1.2 グラスライニングの誘電率と耐電圧

グラスライニングは上引きガラスと下引きガラスの複合 体である。したがって等価回路で表わすと次のようになる

Break down voltage [kV/mm]

S:電極の面積 [m²] C₁:上引ガラスの静電容量 [F] C₂:下引ガラスの静電容量 [F] ε₀:真空の誘電率 8.855*10⁻¹² [F/m] ε₁:上引ガラスの比誘電率 ε₂:下引ガラスの比誘電率 d₁:上引ガラスの厚さ [m] d₂:下引ガラスの厚さ [m] R₁:上引ガラスの抵抗 [Ω] R₂:下引ガラスの抵抗 [Ω] 全体としての容量Cは

$$C = \frac{C_1 C_2}{C_1 + C_2} = \varepsilon_0 \ \varepsilon_1 \ \varepsilon_2 \ \frac{S}{\varepsilon_1 d_2 + \varepsilon_2 d_1}$$

となるから, 複合体としての誘電率 ε は

$$\varepsilon = \frac{\varepsilon_1 \varepsilon_2 (\mathbf{d_1} + \mathbf{d_2})}{\varepsilon_1 \mathbf{d_2} + \varepsilon_2 \mathbf{d_1}}$$

となり各層の 厚みと 誘電率に 依存することになる。 つまり,上引き層の誘電率のみを2倍にしても全体としては2 倍にはならない。

また、V1、V2 は各々のインピーダンスの比となるので

$$\dot{V}_{1}: \dot{V}_{2} = \frac{1}{\frac{1}{R_{1}} + j\omega C_{1}} : \frac{1}{\frac{1}{R_{2}} + j\omega C_{2}}$$
$$V_{1}: V_{2} = \frac{1}{\sqrt{\frac{1}{R_{1}^{2}} + (\omega C_{1})^{2}}} : \frac{1}{\sqrt{\frac{1}{R_{2}^{2}} + (\omega C_{2})^{2}}}$$

第3表 絶縁破壊時の各層における kV/mm の計算値 Tabel 3 The caluculated voltage per glass thickness value of E-31 and slide glass at breakdown

	-		
Thickness ratio of E-31	E-31+Sl-1 [kV/mm]	E-31 [kV/mm]	Sl-1 [kV/mm]
1.00	14	14	0
0.67	25	16.6	42.1
0.65	27	17.6	44.6
0.34	19	9.4	23.9
0.32	22	10.8	27.3
0.23	25	11.4	29.1
0	30	0	30
	1	1	1

E-31: Experiment glass No. E-31

SI-1 : Slide glass

ここでガラスの抵抗はかなり大きく $1/R^2 <<(\omega C)^2$ であるから $1/R^2 = 0$ とすると次のように簡単になる。

$$\mathbf{V}_1:\mathbf{V}_2 = \frac{1}{\omega \mathbf{C}_1}: \frac{1}{\omega \mathbf{C}_2}$$

各層における厚さあたりにかかる電圧の比は次のようになる。

$$\frac{\mathbf{V_1}}{\mathbf{d_1}}: \frac{\mathbf{V_2}}{\mathbf{d_2}} = \frac{1}{\varepsilon_1}: \frac{1}{\varepsilon_2}$$

したがって,各層にかかる電圧はやはり各層の誘電率と厚 さに依存することになり,厚み当りの電圧では誘電率の小 さい方が大きくなることになるので,グラスライニング層 としての耐電圧に影響すると考えられる。以上のような理 由により上引き層と下引き層の誘電率を合わせる必要があ る。

そこで、実際に誘電率に差のある 2 種類のガラス(スラ イドガラス ε =6.7 に、E-31 ε =17 をコーティングしたも の)を一方の層の厚さを固定し、他方の厚さを変化させ、 耐電圧を測定した結果を示す。測定は25 °C AC 60Hz 1kV /sec 絶縁油中にて下部平板、上部丸型電極 (JIS C2110) にて測定した。第5 図にその結果を示す。結果より、絶縁 破壊した時点での複合層の単位厚さあたりにかかる電圧、 および各層の単位厚さあたりにかかる電圧を計算したもの を第3 表に示す。

誘電率の低いスライドガラスに単位厚さあたりに大きな 電圧がかかり、スライドガラスのもつ絶縁破壊強度を越え るため、スライドガラスの層が先に絶縁破壊をし、つづい て全電圧が残ったE-31層にかかるためE-31層が絶縁破壊 をすると予測される。結果は、E-31厚み比率が0.67,0.65 のものは破壊時点で両層の単独での耐電圧値を超えてしま っているが、その他では予測と近い結果となっている。

2.2 pH ガラス

実験室で使用されるガラス膜電極の pH センサーはよく 知られているが,工業用 pH センサー では 耐圧性, 耐熱 性,機械的強度などの点で信頼性の乏しいガラス膜電極を 使用することは問題である。そこで上記の問題を解決した グラスライニング製 pH センサーを開発し販売している。

第7図 pH センサー構造模式図 Fig.7 Schematic structure of pH sencor

第8図 pH センサーの起電力特性 Fig. 8 Electromotive force of pH sencor

2. 2. 1 測定原理

第6図に pH センサーの測定原理図を示す。測定電極部 はガラス膜電極のようにガラス膜の両面が溶液に接するの ではなく、片面にのみ接液し、他面は直接銀導体に接する 構造となっている。接液面上で溶液の pH に応じた電位が 発生する。つまり、測定電極接液面上でネルンスト式が成 立する。したがって、測定電位Eは

$$\begin{split} \mathbf{E} &= -\mathbf{E}_{AB} + \mathbf{E}_M + \mathbf{E}_D \\ &= \mathbf{E}_M + (\mathbf{E}_D - \mathbf{E}_{AB}) \\ &= -\frac{2.303 \mathrm{RT}}{\mathrm{F}} \mathrm{pH}_M + \mathrm{E}_0 \\ &(\mathbf{E}_0 &= \mathbf{E}_D - \mathbf{E}_{AB}) \end{split}$$

Eo は電極固有の値であるので, E を測定することによって pH_M を求めることが可能である。

2.2.2 構造

簡単には第7図のような構造をしており,比較電極の内 部液にはプロセス側より若干高い圧力がかけられており, ガラスディスクが焼ばめされているダイヤフラムから内部 液がわずかに流出するようになっている。したがってダイ ヤフラム部でのつまりなどによる測定誤差が発生しない。

第9図 希土類のイオン半径と耐水性,導電率の関係(Y含有ガ ラズの耐水性,導電率を1とした)

Fig. 9 The water durability and conductivity as a function of rare-earth elements The yttria factor=1

2.2.3 性能

1) 起電力特性

理論値は59.15 mV/pH (at 25 °C) である。55 mV/pH (at 25 °C) 以上とガラス電極と 同程度保証 することが可 能である。測定誤差はpH0~10では±0.1 pH 以下である。 ただし第8 図に示すように pH 10以上ではアルカリ誤差が 発生する。

2) 耐食性

pH ガラスの耐食性は通常の 化工機用ガラスに比べ劣る が、当社が規定している 0.1 mm/year 以内の条件であれ ば24時間連続使用で1 年間の性能保証をしている。

3) 機械的強度

機械的強度はグラスライニング製であるため、バッフル などと同等の高い機械的強度を有している。

4) 熱的特性

使用温度範囲は $0\sim140$ °C である。熱衝撃は当社標準グラスチール同様 $\Delta T = 130$ °C である。

5)応答性

pH0から pH10への pH 値の急変でも90%応答で約3 秒以内とすぐれた応答性を示す。

2.3 導電性ガラス

以前に,高耐食性と高導電性を有する導電性ガラスを開発することを目的とし,希土類含有導電性ガラスを検討し,耐水性と導電性および pH 特性を測定・評価した。

2. 3. 1 耐水性と導電率と pH 特性の測定

耐水性はバルクの ガラスを使用し 100°C・蒸留水・気 相中にて 320 時間で試験した。

導電率の測定は直流3端子法で100°C で行った。

pH 特性は 30°C にて緩衝液を使用し,起電力値を測定 した。

2.3.2 結果

Na₂O-R₂O₈-SiO₂系ガラスにおいて, R を Y, Nd, Ce としたものについて, イオン半径を横軸に, 耐水性と導電 率(イットリア含有ガラスの物性=1としたもの)を縦軸 にとったグラフが**第9**図である。導電性に関しては, あま り差はみられないが,耐水性に関してはイットリアがかな り良いことが分かる。

また、 pH に対する起電力特性についても測定したが、 ネルンスト係数についてイットリア含有ガラスで 57 mV/ pH, ネオジウム含有ガラスで53 mV/pH, セリウム含有ガ ラスで 52 mV/pH の値が得られ、イットリア含有ガラス が一番理論値に近い値が得られた。この結果より、Na₂O-Y₂O₃-SiO₂ 系について実験を行った。

2.3.3 イットリア含有ガラスの耐水性と導電率

 $Na_2O-Y_2O_8$ -SiO₂ 系において、 Y_2O_8 mol%を一定とし Na_2O/SiO_2 モル比を変化させたものについて、 Na_2O/SiO_2 モル比を横軸に、耐水性(腐食速度 [mm/year]の逆数) と導電率を縦軸にとったものが第10図である。 Na_2O/SiO_2 モル比が大きくなると共に耐水性は急激に悪くなり、導電 率はほぼ直線的に増加した。つまり、ガラス中の Na^+ 濃 度が増加し、骨格形成成分のシリカが減少したために導電 率は増加し、耐水性が減少したと考えられる。

2.3.4 導電性ガラスの用途

pH ガラスとして起電力特性を満足し、かつ導電率が小 さければ応答性が速くなることが期待できる。また、グラ スライニング製リアクターにおいて静電気によるグラスラ イニング機器の損傷などの事故が生じている。そういった 静電気による事故防止手段の1つとしてガラスの導電率を 大きくする方法がある。一般には10⁻⁸S/cm以上にすれば 良いといわれている。上記イットリア含有導電性ガラスは 100°C においてはその条件を満足しているが、室温付近 ではまだ2桁程度およばない。

む す び

以上今回開発研究したグラスライニング製電極管用高誘 電率ガラス, pH ガラス (pH センサー) および以前に開発 した希土類含有導電性ガラスについてその物性などを紹介 した。

高誘電率ガラスについては目的用途として,オゾナイザ ーなどの無声放電を利用した放電電極への適用を考えてい る。pH センサーは既に反応器内の溶液の pH の直接測定 に数多く販売している。希土類含有導電性ガラスについて は、目的に応じて改良の必要はあるが電気回路部品・発熱

第10図 Na2O/SiO2 モル比と導電率,耐水性の関係 Na2O/SiO2 モル比=0.7のガラスの耐水性を1とした

Fig. 10 The water durability and conductivity as a function of the Na₂O/SiO₂ molar ratio Water durability factor of glass=1 at Na₂O/SiO₂ molar ratio=0.7

体(ヒーター,自動車や建築物の窓ガラス用くもり止めガ ラス)・各種センサー・静電気防止ガラス(テレビやコン ピュータのブラウン管,グラスライニング反応器)などの 広範囲の目的用途が考えられる。

今後,様々な機能ガラスについても商品開発することに より,ユーザのニーズに応えていくつもりである。

〔参考文献〕

- 1) 牧島:機能性ガラス入門(1984),(株)アグネ
- 2) T. Minami et al.: J. Electrochem. Soc., Vol. 124 No. 11 (1977) p. 1659
- 3) M. G. Alexander et al.: Solid State Ionics, Vol. 18 & 19 (1986), p. 478-482
- 4) Epharaim Banks et al.: J. Electorchem. Soc., Vol. 132 No.
 11 (1985) p. 2617-2621
- 5)佐藤ほか:化学セミナー13 pH を測る(1987), 丸善
- 6) 原ほか:神鋼フアウドラー技報 Vol. 33, No. 1 (1989), p. 4-7
- 7) H. Unuma et al.: J. Mater. Sci. Lett. Vol. 6, No. 9. (1987) p. 996-998
- 8) 原ほか:窯業協会,昭和62年度年会予稿集 (1987) p. 331-332

フルゾーンの流動・混合特性

Flow Structure and Mixing Characteristic in a Vessel Stirred with FULLZONE Impeller

In the previous paper, the development and some operational characteritics of FULLZONE were explained. In this paper, its flow structure and mixing under laminar flow conditions have been studied theoretically by using computational fluid dynamics (CFD) and experimentally by measuring velocity and circulation time distribution. The main results are as follows. (1) There are two local circulating flows and an overall circulating flow connecting the local two. The overall circulating flow is caused from the pressure difference around the crosswisely arranged, upper and lower paddles of FULLZONE through its rotation.

(2) This flow pattern of FULLZONE leads to its fairly good mixing ability in the high viscosity range. Homogenious mixing will be attained with the combined effects of local mixing caused by the local circulating flows and its linkage by the overall circulating flow.

まえがき

当社は1991年1月,極めて広い粘度範囲(層流から乱流 操作)において効率良い撹拌が可能な撹拌翼『フルゾーン』 を開発して販売を開始した。前報¹⁾では主にフルゾーンの 開発および撹拌性能について報告した。本報および次報で よ,流動数値計算法を用い,理論的に流速および循環時間 か布を測定することにより,実験的にフルゾーンを用いた 覚拌槽内の流動・混合特性を解明することを試みた。なお 本報ではまず層流撹拌時の流動特性についてのみ報告す る。

検討手法

.1 流体数值解析(数值実験)

.2 流速測定

CFD結果の 妥当性を確認 するために, 槽内径 D=0.4 n, 槽高 0.8 m の 透明アクリル 樹脂製搅拌槽内 (H/D= ..25, H: 液深)の流速をレーザードップラー流速計(以下 LDAと略す)を用いて測定した。撹拌液には代表的なニ ュートン流体である水飴水溶液を用いた。

.3 循環時間分布の測定

撹拌槽内の流動をマクロに把握して上記流動解析結果と の関係を検討するために槽内循環時間分布を測定した。循 環時間分布の測定には粒子追跡法を用いた⁵⁾。 粒子には直 径5 mm のスポンジを用いた。撹拌槽内の上段翼と下段翼 の中間断面に検査面を設定し,粒子が撹拌槽内を1循環す る時間を測定した。 循環時間の 測定個数は約 500 個とし た。また,高粘度液用の代表的な翼であるダブルヘリカル リボン翼を用いた槽内の循環時間分布も実測し,フルゾー ンのそれと比較した。

- 結果および考察
- 2.1 流動特性
- 2.1.1 流動機構

フルゾーンを用いた撹拌槽内の流動状態をCFDにより 解析した結果をr-z面における流速ベクトルとして第1 図(a)~(d)に示す。ここに示した計算結果は信頼性の高い直 接計算法により求められたものであるが,計算結果が真に 正しい結果を与えているかどうかを検証することは重要で ある。ここでは、半径方向流速の計算値とLDAによる実 測値を比較した。説明の便宜上、座標系を次のように定義 する。

> 半径方向 r (軸中心を r=0) 周 方 向 θ (下段翼平面部を $\theta=0$ 第1図参照) 軸 方 向 z (槽底部を z=0)

第2図はz=0.35 m, r=0.13 m における半径方向流速分 布を円周方向に対してプロットしたものである。翼前方に 発生する流速のピーク値は計算値と一致するが, ピーク間 の流速にわずかの不一致が認められる。この不一致は差分 計算に基づく数値誤差に起因するものと考えられる。しか し全体的な流速の増加 ・ 減少傾向は 実測値と 一致してい る。また第3図は r=0.13 m における半径方向流速値を軸 方向距離に対してプロットしたものである。流速の実測値

.

第1図 CFDによるr-z断面における流速ベクトル (Re=10) Fig. 1 Computed velocity vectors in r-z planes (Re=10)

と計算値は良好に一致することから,計算結果の妥当性が 確認された。

次に**第1図**の計算結果を用いて槽内の流動機構を概説する。

(a) $\theta = 0.32 \text{ rad}$

下段翼域より吐出された流体の一部は上段翼域に達し再 び下段翼域に吸い込まれるが,残りの流体は壁面付近を上 昇して 液面にまで達し 上段翼域に 吸い込まれる。 これよ り,この断面では下段翼付近を循環する循環流と下段翼か ら液面にまで及ぶような槽内全体を循環する循環流が形成 されている。

(b) $\theta = 1.0 \text{ rad}$

上段翼域から吸い込まれた流体は下段翼域にまで達して おり、上段翼域と下段翼域との間で物質移動の促進が期待 される。この流れは上段翼前方に発生する正圧と下段翼後 方に発生する負圧の圧力勾配に基づく。この現象を槽内の 圧力分布を用いて考察する。第4図は(b)断面におけるr= 0.1 mにおける圧力(各点の圧力と大気圧との差)を軸方

向距離に対してプロットしたものである。上段翼域では翼 前面に位置するため圧力は正圧になるが,下段翼域では翼 後面になるため圧力は負圧となることから,第1図(b)に示 した流れはこの圧力勾配に起因することが示唆される。

(c) $\theta = 1.87 \text{ rad}$

上段翼域では,流体は翼の回転により半径方向へ吐出さ れ再び上段翼域へ吸い込まれるが,その一方で上段翼から 下段翼域にまで達する軸方向流れも形成されている。これ より,この断面では上段翼上部を中心とする小循環流と,上 段翼域から下段翼域にまで及ぶ循環流が形成されている。

(d) $\theta = 2.74 \text{ rad}$

下段翼域より吐出された流体の大半は上段翼中間付近に 流入し,一部は槽壁に沿って上昇し液面付近にまで達する。

第7図 フルゾーンの循環時間分布(Re=10) Fig. 7 Circulation time distribution of FULLZONE at Re=10

2.1.2 フローパターン

流動解析および実測結果に基づいたフローパターンを第 5 図に示す。また撹拌槽内の主な循環流の模式図を第6図 に示す。槽内では下段翼から上段翼下部付近にかけての循 環流,下段翼から液面付近にまで及ぶ循環流および上段翼 上部付近の循環流の3つの循環流が形成されている。した がってこのフローパターンは、上段翼域および下段翼域に おける局所的な循環流に基づく局所混合とそれらをうまく つなぐ循環流によって槽内全体での均一混合を実現すると 考えられる。

2.1.3 循環時間分布

第7図は循環時間分布の実測値を無次元化したものであ る。循環時間分布図中に示したそれぞれの区分A, B, C は第6図に示した3つの循環流の相互作用により形成され る循環パターンである。

 $\begin{array}{c} \mathbf{A} : (1) \rightarrow (2) \\ \mathbf{B} : (1) \rightarrow (3) \rightarrow (4) \rightarrow (6) \rightarrow (1) \end{array}$

第8図 ダブルヘリカルリボン翼の循環時間分布 (Re=10) Fig. 8 Circulation time distribution of double helical ribbon impeller at Re=10

ここでフルゾーンによる循環時間分布とダブルヘリカル リボン翼(以下DHRと略す)によるそれを比較する。第 8図はDHRを用いた循環時間分布の実測値である。DH Rを用いた場合の循環時間はt/t=1.0を中心とした極めて シャープな分布となる。一方フルゾーンを用いた撹拌槽内 の循環時間分布のピークはt/t=0.5付近に存在し、分布の 幅はt/t=4.5付近に達している。この違いはDHRが軸流 型の撹拌翼であるのに対し、フルゾーン翼は多少の軸流を 有するが基本的には放射流型の撹拌翼であることに起因す る。

2.2 混合特性

計算により求めた槽内流動場を用いて濃度方程式を独立 に数値計算することにより撹拌槽内の混合過程を求めた。 第9図にトレーサー投入後の濃度分布の計算結果およびヨ ウ素による 着色実験結果 (第9図写真) を示す。 これよ り、投入されたトレーサーの拡散・移流過程の計算結果は 実測値とほぼ一致する。このことは、流速面のみならず混 合過程の面からも数値計算法の正当性が確認されたことを 示す。液面より投入されたトレーサーは上段翼域で小循環 流を形成しながら下段翼域に達する。下段翼域に吸い込ま れたトレーサーは下段翼先端部より吐出されるが,その一 部は再び下段翼域に吸い込まれ、上段翼域から下段翼域へ 流れ込む流体と合流する。そして残りは槽内壁面に沿って 液面付近にまで達し、上段翼域より吐出された流体と合流 して再び上段翼域より吸い込まれる。これより, 2.1.2 で 述べたフローパターンに基づく循環流間の物質交換は極め て盛んであることが容易に想像できる。

第9図 混合過程の計算値と実測値の比較(Re=10)

Fig. 9 Comparison of computed concentration distribution and experimental photographs (Re=10)

むすび

フルゾーンを用いた層流撹拌槽内の流動・混合特性をC FD,流速測定および循環時間分布の面から解明すること を試みた。その結果次の結論を得た。

- 1) 撹拌槽内では2つの局所的な循環流とこれらの循環 流をつなぐ槽内全体におよぶ1つの循環流が存在す る。槽内全体で生ずる1つの循環流は上段翼と下段翼 をクロスに配置することにより生ずる圧力勾配に起因 する。
- 2) 撹拌槽内のフローパターンに基づく物質移動は極め て良好である。撹拌槽内では上段翼域および下段翼域 における局所的な混合作用とそれらをうまくつなぐ循 環流の存在による槽内全体での均一混合を実現する。 今回の報告はフルゾーンを用いた層流撹拌操作におけ る槽内の流動・混合特性の解明に限定した。遷移域から

乱流域に至る流動・混合特性については機会を改めて報 告する。

- [使用記号]
 D:
 槽內径 [m]
 t : 循環時間 [s]

 d:
 翼径 [m]
 t : 平均循環時間 [s]

 f :
 循環時間頻度 [%]
 u : 半径方向流速 [m/s]

 H:
 液深 [m]
 z : 軸方向座標 [m]

 P:
 E力 [Pa]
 Greek letters

 r :
 半径方向座標 [m]
 0 : 周方向座標 [m]

 T :
 無次元循環時間 [-]=t/t
- 〔参考文献〕
- 1) 菊池ら:神鋼パンテツク技報, 35,1 (1991)
- 2)高田ら:ibid, 34,3 (1990)
- 3) 梅垣:日本機械学会論文集,54,505(昭和63)
- 4) 上ノ山:化学工学論文集,14,6 (1988)
- 5)井上ら:化学工学, 33 (1969)

PMX-98 電力デマンド監視への適用例

PMX-98 Application to Monitoring Maximum Demand of Electric Power

To reduce the cost by the decrease of a contracted maximum demand is great concern for us because we have large electric furnaces for manufacturing glass lined equipment.

We have appended the option softwares to Process Monitor PMX-98 one by one and now append "the option software for monitoring maximum demand" to it. This option software makes it easy to build a maximum demand monitoring system and makes it possible to build an economical system monitoring both of maximum demand and other utilities.

We built the maximum demand monitoring system utilizing PMX-98 and the option software. Then we succeeded in slicing about 10 % out of our contracted maximum demand since it made it possible that the operators of the large furnace operates it after monitoring the condition of all load.

This paper describes the application of the maximum demand monitoring system utilizing the PMX-98 and the option software.

まえがき

当社では, グラスライニング用の大型電気炉を有してい る関係で,契約電力の削減によるコストダウンが大きなテ ーマとなっている。

また,従来より販売してきたパッケージソフト「プロセ スモニタ PMX-98」にオプションソフトを順次追加して きているが,今回「デマンド監視オプション」を追加し た。これによりデマンド監視システムを簡単に構築でき, 1台のパソコンで他のユーティリティの監視システムを兼 ねることもできるため,経済的なシステムを構築できる。

当社ではこれらを利用して、「デマンド監視システム」 を構築し、大型炉のオペレータが負荷状況を把握して炉の 運転を行うことで、約10%の契約電力削減に成功してい る。本稿では「PMX-98」の応用例として本システムを 紹介する。

1. 導入経緯

1.1 従来の電力管理と問題点

当社では, グラスライニング用の大型電気焼成炉を使用 しているため,使用電力量の監視には従来より注意を払っ てきた。受電所および動力班の控え室に契約電力超過予報 を出力する警報装置を置き,警報が発生すると焼成職場へ 電話で通知され,さらに職場長から大型炉のオペレータに 電力カットの指示が出される。

これでは、当然警報発生から電力カットまでの伝達のた めのタイムラグが発生して緊急を要する場合に対応できな いし、一時的な炉の出力低下が長引けば、焼成時間が伸び てグラスライニングの品質への悪影響も引き起こしかねな い。

1.2 システムの目標

当社におけるこれまでの電力監視の問題点を解決し、同時に約10%の契約電力削減を実施するため、次のようなシ

ステムの目標を掲げた。

- (1) 職場長および大型炉のオペレータが工場全体および 各炉の負荷状況を直接把握できる。
- (2) 炉の出力を下げなくても済むように、オペレータが あらかじめ電力消費の予測ができ、炉のスケジュール 調整ができる。
- (3) 電力消費量の多い設備について,それぞれ個別の電力管理を行える。

これらの目標を達成するためには,各焼成炉の状況の把握が必要であり,単なる電力監視だけでは対応しきれない と思われる。そこで,パッケージソフト「PMX-98」お よび「デマンド監視オプション」を利用して,電力監視と ともに各焼成炉の温度変化や消費電力の推移を監視し,各 炉の電力消費のピークをオペレータが予測できるシステム を開発することとした。この予測は,オペレータの経験に よるもので,焼成トン数,焼成温度パターン,現在までの 炉の温度の変化などの情報さえあれば,容易に行えるもの である。

電力管理の概要

2.1 デマンドによる管理

ここでは電力管理がどのように行われるか,その概要に ついて述べる。

まず,第1図にデマンドと使用電力量の関係を示す。デマンドとは、時限(通常30分)内の平均電力のことで、時限が30分ならば、その時限内に使用された [kWh] で表される使用電力量の2倍の値となる。契約電力はこのデマンド値で取り決められている。

30分の時限は取引用のメータが測定しており,この時限 内のデマンドが契約電力内に収まればよい。したがって, 一時的に契約電力を上回る電力を使用しても,残り時間の 使用電力を下げれば契約電力を守れるわけである。

第1図では目標デマンドが1500 kW で,0~15分間2000 kW の電力で推移し,このままいけば目標 デマンドを超過してしまうことが予想される。しか し,15~30分の間を1000 kW の電力にカットした ので,丁度目標デマンドの1500 kW に収まってい る。この15~30分における使用可能な電力は1000

kW であるが、この電力を許容電力と呼び、その時点のデマンドと30分における目標デマンドを直線で結んだその傾きで表される。

このような対応を可能にするのが次に示す各種の警報で ある。

2.2 警報の種類と対応

当社で採用している警報はつぎのようなものがある。

2.2.1 1段警報

比較的遮断可能な負荷(照明,空調など)を切った状態 で運用可能な総電力を設定値とし,第2図の1段警報基準 値のようにラインを引く。デマンド値がこのラインを超え ると警報が発生する。

この警報が発生してすぐに1段警報設定値まで負荷を遮 断すれば,最終的に時限到達時には目標デマンド(=契約 電力)に収まる。

2.2.2 2段警報

遮断できない負荷(生産ラインなど)の総電力を設定値

とし,第2図の2段警報基準値のようにラインを引く。デ マンド値がこのラインを超えると警報が発生する。

Fig. 3 Prediction of maximum demand excess and allowable electric power

30

この警報が発生してすぐに2段警報設定値まで負荷を遮断すれば,最終的に時限到達時には目標デマンドに収まる。

2. 2. 3 超過予測警報

→ Demand period [min]

第3図 超過予測と許容電力

現時点のデマンド値, 瞬時電力, 残り時間から時限到達時のデマンド値を予測し, その値が目標デマンドを超える と警報が発生する。この場合,現時点のデマンド値と目標 デマンドを結ぶ直線の 傾きが 表す 電力(許容電力)にま で,負荷を遮断すると目標 デマンドに収まる。(第3図参 照)ここで言う予測とは,現時点の瞬時電力が時限到達時 まで維持されると仮定した場合の予測で,その間の電力の 変化は考慮していない。

3. デマンド監視オプション

ここでは「PMX-98」の オプションとして 販売してい る「デマンド監視オプション」について説明する。

第4図 デマンド監視画面の表示例

Fig. 4 Sample of a maximum demand monitoring display

3.1 機能

3.1.1 デマンド監視機能

「デマンド監視画面」は,各種電力管理値を監視するための画面で,

- ・デマンド現在値
- ・目標デマンド
- 1・2段警報基準値
- ・瞬時電力(1分間の移動平均値)
- をリアルタイムトレンドグラフとして表示し、さらに
 - ・デマンド現在値
 - ・目標デマンド
 - ・予測デマンド
 - ・許容電力
 - ・瞬時電力(1分間の移動平均値)
 - ・時限の残り時間

を数値で表示する。表示例を第4図に示す。

- 3.1.2 警報機能
- 1) 1 · 2 段警報

2.2.1項, 2.2.2項で述べた機能で,これらの警報が発生 すると,即座にそれぞれの設定値以下に負荷を遮断すると 目標デマンドが守られる。また,この警報は「PMX-98」 のタグとして登録された外部機器の接点に出力することも できる。これによりプログラマブルコントローラに接続さ れたブザーやパトライトを ON / OFF させることができ る。

これらの警報は解除されるまでの遅延時間を持ち,残り 3分までは1分,残り3分~30秒までは30秒,残り30秒以 下では遅延時間なしとなっている。

2) 超過予測警報

2.2.3項で述べた警報で, これも外部機器へ出力するこ とができる。デマンドを予測する場合に使用する瞬時電力 は1分間の移動平均値を使用している。この警報が発生し た場合, デマンド監視画面に表示される許容電力以下に負 荷を低減させると目標デマンドを守ることができる。

3.1.3 管理値の演算機能

「演算ハンドラ*」という「PMX-98」のオプションが

あり,外部機器からの値を演算処理してその演算結果をタ グとして,他の外部機器からの値と同様のリアルタイムデ ータとして扱うことを可能にする。この機能により,

- (1) 時限
- (2) 1·2段警報基準值
- (3) 予測デマンド値
- (4) 各種警報
- (5) 使用電力量
- (6) デマンド現在値
- (7) 1分間移動平均電力

などを計算したり,各種の設定値(警報設定値,目標デマ ンド,1バルス当たりの電力量など)を保持したりできる。 通常は,演算機能はオプションの「演算ハンドラ」が必 要であるが,「デマンド監視オプション」には演算式を設 定済みの"EXE"形式の演算ハンドラが添付してあり, 「演算ハンドラ」を購入しなくても各機能を使用すること ができる。もちろん演算式のソースファイルが付属してい るので,「演算ハンドラ」を購入すれば,ユーザにて機能

また,パソコンのタイマは標準時刻に合わせてセットさ れるが,時限が標準時刻に合っているとは限らないので, この演算ハンドラを利用した時限タイマがあり,時限を任 意の時刻に合わせることができるようになっている。

3.2 構成

- 本オプションは大きく分けると,次のような構成になる。
- (1) デマンド監視画面(フォアグラウンドタスク)
- (2) 演算ハンドラ(演算式のソースを含む)
- (3) タグ登録用ユーティリティソフト

の追加、変更などの応用が可能になる。

- (4) 各種設定用データベースファイル
- 3.3 必要なハードウェア 本オプション機能を使用するには、次のようなハードウ
- ェアが必要である。
 - ・電力パルス検出器
 - ・カウント機能付き I/F 機器(プログラマブルコント ローラ,伝送機器など)

必要ならば,

・パルス変換器(パルスの速度を落とす)

・警報通知用ブザー

を準備する。

4. システムの機能

ここでは、今回「PMX-98」と「デマン ド監視オプション」を利用して開発したシス テムの機能について述べる。第1表に本シス テムの機能を示す。

4.1 デマンド予測支援機能

時限到達時のデマンドを,現時点のデマン

ド値と瞬時電力のみから予測しても,残り時間に使用電力 がどのように変化するかによって実際のデマンドは予測と は全く異なってしまうことが多い。そこで,主要な設備の 現時点までの操業状態を見て,その後の電力消費のパター ンを予測することが必要になる。ただし,この予測方法を 忠実に実行するには各設備の操業予定が必要で,さらに予 定の変更に対応する必要もあり,複雑なシステムになり過 ぎるきらいがある。

オペレータは各設備の状態(本システムでは炉の温度変 化)を見れば大体の見当をつけ,総合的な判断を下すこと が可能である。そこで,本システムでは次のような監視機 能を備えている。

1) デマンド監視画面

前述した「デマンド監視オプション」が標準で装備して いる監視画面で,各種管理値のトレンドグラフおよび数値 での表示を行う。大型炉をスタートさせる場合にはこの画 面により,現在のデマンド値や残り時間,許容電力などを チェックする。

2) 各焼成温度の監視画面

「PMX-98」の 標準機能 であるヒストリカルトレンド 機能を利用して,各焼成炉の温度変化や瞬時電力の変化を 監視できる。これにより,大型炉のオペレータは他の炉の 電力ピークが何分後にやってくるか,自分が使用する炉が いつスタートすればピークをずらすことができるかなどを 判断することができる。

4.2 報告書作成機能

1) 日報・月報の作成

データロギングファイルを元に,30分ごとの電力管理日 報,および月報をファイルに作成,またはプリンタ出力す る。

2) カラー画面ハードコピー機能

任意の画面をハードコピーできるので,トレンド画面な どを比較,解析することができ,電力消費パターンの解析 などに活用できる。

4.3 デマンド警報機能

1) 1 · 2 段警報

「デマンド監視オプション」が標準で持つ1・2段警報 機能。警報発生時には,外部機器に接続された警報ブザー を鳴らす。これにより,オペレータは適切な負荷を遮断す る。

2) 超過予測警報

同じくオプションの標準機能

3)アラームサマリ表示
 「PMX-98」の標準機能を用いたアラームサマリ表示

第1表 デマンド監視システムの機能

Table 1 Functions of the maximum demand monitoring system

The maximum lemand nonitoring	Support functions of maximum demand prediction Report output functions	 Trend graph display of each furnace temperature Demand monitoring display Daily report Monthly report Color display hard copy 	Data logging
	Demand alarm functions	 Step 1 and 2 alarm Excess prediction alarm Alarm summary display 	

で、発生・復帰の記録を画面表示する。

その他,上記各機能のベースとなるデータロギング機能 (「PMX-98」標準機能)を持ち,1分ごとおよび30分ご とに各計測値,演算結果をロギングする。

現在のソフトウェア技術なら,予測により電力ピークを ずらす指示を行ったり,遮断すべき負荷を指示したりとい ったことも可能である。しかし,そのための下準備ができ ている生産システム(全てのデータがオンライン化されて いる)ならわずかの努力で可能であるが,そうでない場合 にはデータの準備に多大な労力を要する。したがって,あ くまでも判断は人間に委ねることが,低コストで確実な方 法といえる。ただし将来,データのオンライン化ができれ ば,AI的な手法を用いて自動的な遮断すべき負荷の指 示, 炉のスタートのタイミング指示が実用化できるだろ う。

5. システム構成

5.1 ハードウェア構成

第5図にハードウェア構成図を示す。受電所からの電力 パルスの他に,4基の焼成炉と2台のコンプレッサの電力 パルスもカウントしている。パルスは1~2kWh/pulse に 設定されている。

各焼成炉の状況を把握するために温度の測定も行ってい る。これにより昇温過程にあるか,あと何分後に電力のピ ークがやってくるかなどを知ることができる。

パソコンとのインターフェイス用機器としては,プログ ラマプルコントローラを採用している。

5.2 ソフトウェア構成

第6図にソフトウェア構成図を示す。詳細を次に示す。 1)割り込みハンドラ

プログラマブルコントローラとRS-232Cで通信を行う ドライバタスク。

2) デバイスハンドラ

プログラマブルコントローラの通信プロトコルをサポートし,データの要求,書き込み,内部フォーマット・コマンド間の変換などを行うバックグラウンドタスク。

3)プロセスデータマネージャ

リアルタイムデータの管理を行うバックグラウンドタス ク。

4) 演算ハンドラ

リアルタイムな演算処理を行い,結果をタグとして扱う ためのデータハンドリング用バックグラウンドタスク。

5) ステータスチェックタスク

イベント(アラームなど)のチェックを行い,オペレー タに通知するバックグラウンドタスク。

第5図 ハードウェア構成

Fig. 5 Hardware construction

データロギングを行うバックグラウンドタスク。

7) プリントタスク

プリンタスプーラ機能と画面ハードコピー機能を持つバ ックグラウンドタスク。

8) ヒストリカルトレンドタスク

データロギングファイルからデータを読み出してヒスト リカルトレンドグラフを表示するフォアグラウンドタス ク。各焼成炉, コンプレッサなどの状況把握に使用した り,デマンド,電力の記録の確認を行える。

9) レポート作成タスク

日報・月報の作成を行うフォアグラウンドタスク。テキ ストファイルとしてディスクに出力したり,プリンタに出 力したりできる。

10) アラーム表示タスク

アラームの発生・復帰記録を表示するフォアグラウンド タスク。

11) デマンド監視タスク

デマンドのリアルタイムトレンドや各管理値の数値表示 を行うフォアグラウンドタスク。

6. 運用結果

本システムは、完成以来順調に稼働しており、契約電力 の約10%カットを実現している。当社の場合、特に大き な炉が2基あり、この2基の電力ピークをずらすことが契 約電力を守るポイントである。最も大きな炉のオペレータ は、

- (1) 許容電力が炉の最大出力よりも大きいことをデマン ド監視画面で確認し,
- (2) 2番目に大きな炉の状況をトレンドグラフで知り,

(3) 2つの炉の電力ピークが重ならないことを確認して 炉をスタートさせる。それでも警報が発生すれば、あらか

第6図 ソフトウエア構成 Fig. 6 Software construction

じめ 定められた 負荷を 遮断してデマンドの 超過を回避する。

むすび

従来のデマンド監視装置は単に電力のみを監視し, **警**報 が発生すれば後追い的に対処するためのものでしかない。 しかし,本稿で紹介したように各設備の状況が一目で把握 できるシステムなら,デマンド超過をあらかじめ回避する ように設備を運用することが可能になる。また,他のユー ティリティの監視とデマンド監視を1台のパソコンででき るため,経済的なシステムを構築できるというメリットも ある。

プロセスの運転監視用パッケージとして誕生した「PM X-98」であるが、FA、LA、ユーティリティなどへ応 用範囲を広げつつある。また、最近ではCIM構築のため のパーツとして使用されるケースも増えている。この流れ にともなって、運転監視機能を充実させて対象の範囲を広 げ、ネットワークへ対応することでCIM構築のためのパ ーツとしての条件を備えるようになった。今後も「PMX -98」をさらに発展させていく所存である。

⁶⁾ データログタスク

*「演算ハンドラ」

「演算ハンドラ」は、パソコンに仮想の内部演算器を持たせ、データ要求があると各通信ハンドラからのリアルタイムデータを演算処理し、その結果を返すことができる。 演算結果には、リアルタイムデータ同様タグ名が付けられ、 タグ名によってアクセスできる。

演算式へは最大5つのタグ(リアルタイムデータ)を渡 すことができ、演算を行うだけではなくその結果をあるタ グへ出力することもできる。

図A.1に「演算ハンドラ」の「PMX-98」における位 置づけを示す。各アプリケーションは "PDM (Process Data Manager)" と呼ばれる タスクにデータ の読み書き を要求し, "PDM"が各通信ハンドラに 振り分けてその レスポンスを返すが,「演算ハンドラ」の タグの 場合には "PDM"は「演算ハンドラ」に 読み書きを 要求し,「演 算ハンドラ」は各通信ハンドラに必要な要求を出し,それ を元に演算を実行し,結果を返す。

また, "PDM"からの要求時だけではなく, 一定周期 で演算を実行し要求時には最新の演算結果を返すという設 定も可能である。この機能により,常時上限や下限を監視 したり,特殊な制御を行うといった機能を実現できる。

図A.2に演算ハンドラの作成手順を示す。ユーザはユー ティリティソフトを使用して,演算式の定義を行い,「C

図 A.1 演算ハンドラの位置づけ Fig. A.1 Position of the real time date processor

ソースジェネレータ」によってC言語のソースプログラムを生成する。これをC言語コンパイラ(Lattice C Ver. 4.
1)によってコンパイルし、ライブラリとともに リンクすると完成する。これら一連の作業は専用のパッチファイルが付属しており、自動的に行うことができる。

その他,ユーザが独自に関数を作成して実行させること もできるし,次のような特殊な使い方もできる。

1) 定数の設定領域

演算式なしで単なるデータエリアとして設定しておけ ば,各種の設定値を持たせることができる。

特殊機能の実現

ある時刻がきたらあるタグをONにするといった機能 を,関数を定義して一定周期の起動をかけてやれば実現 できる。

要するに,各タグの読み書きが自由にできて,関数を自由 に作成,追加できるので,プログラムで実現できることは 物理的な 制限が なければなんでも できるわけである。ま た,標準で積算値の計算を行う関数,カウント値から瞬時 値を求める関数,ファンクションキー操作(画面切り替え 操作)をエミェレートして自動的に画面を切り替えて実行 できる関数などが付属している。

図 A.2 演算ハンドラ作成手順

Fig. A.2 Generation procedure of real time date processor

高粘度液用薄膜蒸発機「エクセバ」の

スケールアップ

Scale-up of the Thin-Film Evaporator EXEVA for High Viscous Products

EXEVA, our newly developed thin-film evaporator, has been equipped with some special mechanisms different from conventional thin-film evaporators, and this is most effective in concentrating polymer solutions of high-viscosity or heat-sensitive materials and in volatilizing. to obtain very low residual monomer contents.

Some EXEVAs which were scaled up from the test equipment EX-2 (heated area 0.2 m^2) have been put into operation in chemical plants.

This paper describes the scale-up method of the flow and evaporation of EXEVA and the results of investigation for scaled-up EXEVA EX-50 (heated area $5m^2$).

The data of power consumption and discharge quantity of EX-50 substantially correspond to calculated values.

まえがき

当社の開発した高粘度液用薄膜蒸発機「エクセバ」は, 従来の機種にない特殊機構を装備しており, 種々の実液実 験で優れた蒸発性能を示していることを既に本誌(1989年 Vol. 33, No. 2 および 1990年 Vol. 34, No. 3)で詳述し ている。

エクセバは、本格的な販売開始以来、主にポリマー分野 で、従来機器での蒸発が困難であるポリマー、例えば蒸発 後超高粘度になるポリマー、熱変質の受け易いポリマー、 製品の品質を左右する残留揮発分が非常に少ないポリマー などでその特長を生かして利用され始めている。

エクセバテスト機(EX-2,伝熱面積0.2m²)の蒸発テ ストでその性能が認められて、実機を受注製作して、現 在、生産現場で順調に稼働している。

テスト機のテストデータに基づいてスケールアップされた実機(EX-50, 伝熱面積5m²)(写真1)のデータを得たので,流動状態と蒸発性能に関するスケールアップの関係式, 撹拌動力, スクリュ排出機の吐出性能について報告する。

1. スケールアップに関する考え方

高粘度液用薄膜蒸発機内の流動,撹拌動力,蒸発などの 各特性について理論的な研究がほとんどなされていないた めスケールアップについても実装置の実績が先行している のが実情である。

近年,村上ら^{1),2)}によって高粘度流体を用いて,1枚翼 の撹拌式薄膜蒸発機内の流動・混合機構を蒸発を伴わない 場合について理論的かつ実験的に解明された。また撹拌所 要動力,混合などの操作特性との関連をスケールアップ法 も含めて明らかにし,スケールアップにおける関係式を導 出している。

エクセバ(第1図)では、ディストリビュータ、多段特 殊傾斜翼によって、高粘度液からの蒸発、平均滞留時間、 撹拌動力などが規制され、その各々が関連して処理製品に

第2図 撹拌式薄膜蒸発機内の液流動模式図 Fig. 2 Schematic diagram of an agitated thin-film evaporator and flow field

第3図 無次元液膜厚さの比較

Fig. 3 Comparisons of the non-dimensional film thickness

影響を与えている。スケールアップによって,それらがどのような関係になるのかを明らかにする前に,エクセバに 求められる性能からのスケールアップを考えてみる。

エクセバの主な機能は、揮発分を多く含んだ原料液を薄 膜化させて、本体壁面からの伝熱により、揮発分を蒸発し て濃縮し高粘度の製品を得ることにある。このことから、 スケールアップ前後において、本体壁面より等しく熱量が 与えられるならば、内容液の薄膜状態を等しくすることに よって同じ蒸発状態にすることができると考えられる。更 に、平均滞留時間を等しくすることによって、同じ熱作用 を受けた製品を得ることができるであろうことは容易に予 測することができる。スケールアップ前後において内容液 の薄膜状態を等しくするには、本体内壁面と撹拌翼先端と のクリアランスを等しくすればよいと考えられる。次に、 平均滞留時間を等しくするには、どのようなスケールアッ プ則が適用できるか考えてみる。

1.1 流動状態に関するスケールアップの関係式

高田³⁾は,垂直1枚翼を用いた撹拌式薄膜蒸発機内の高 粘度域における詳細な流動解析と実測値に基づいてスケー ルアップ則を提案している。

その中で, 撹拌式薄膜蒸発機の翼近傍の流れ(第2図) を解析することによってスケールアップ前後においてクリ アランスおよび単位浸辺長当りの質量流量を等しくした場 合,

1) 液膜厚さはスケールアップの影響を受けない。 無次元液膜厚さ λ (= h_{∞}/h_0)は、液膜 Reynolds 数およ び槽径依存性はみられない。(**第3図**)

第4図 平均滞留時間の比較

$$\frac{\mathbf{h}_{\infty.s}}{\mathbf{h}_{0}} = \frac{\mathbf{h}_{\infty.L}}{\mathbf{h}_{0}} \tag{1}$$

ここに、ho:内壁面で翼先端のクリアランス〔m〕
 h∞:液膜厚さ
 〔m〕
 以後添字Sはスケールアップ前の装置を、Lはスケール
 アップ後の装置を表わす。

2)フィレット部平均流下速度は、スケールアップの影響 を受けない。

$$W_{f \cdot s} = W_{f \cdot L} \tag{2}$$

W_f:フィレットの平均流下速度 (m·s⁻¹)
 3)フィレット部断面積は,槽径比に比例する

$$\frac{A_{\rm S}}{D_{\rm S}} = \frac{A_{\rm L}}{D_{\rm L}} \tag{3}$$

が成立することを理論解析および実験より導びいている。 本関係式より,スケールアップ前後においてクリアラン スおよび単位浸辺長当りの質量流量を等しくすれば平均滞 留時間を等しくできることを実証している。(第4図) 単位浸辺長当りの質量流量 Γ を等しくすることは

$$\Gamma_{\rm S} = \frac{\mathbf{F}_{\rm o.S}}{\pi \mathbf{D}_{\rm S}} = \Gamma_{\rm L} = \frac{\mathbf{F}_{\rm o.L}}{\pi \mathbf{D}_{\rm L}} \tag{4}$$

であり,

Fo:質量流量

$$\frac{\mathbf{F}_{\mathbf{0}\cdot\mathbf{L}}}{\mathbf{F}_{\mathbf{0}\cdot\mathbf{S}}} = \frac{\mathbf{D}_{\mathbf{L}}}{\mathbf{D}_{\mathbf{S}}}$$
(5)

となる。

これを実際の装置で、処理量10倍のスケールアップを考えると、(5)式よりスケールアップ前後において槽内径を10 倍にしなければならない。このことは、スケールアップに よって槽径のみが大きくなり、槽長さが変わらないことに なり、実用的でないと思われる。

高粘度液用薄膜蒸発機「エクセバ」は、上記の垂直一枚 翼と異なり、ディストリビュータと多段傾斜翼によって構 成されており、機内の平均滞留時間 T_R は次式により与え られる。

[kg•s⁻¹]

第5図 質量流量に対するホールドアップ Fig. 5 Hold up vs. flow rate

$$T_{R} = \frac{H}{F_{O}} \tag{6}$$

H:ホールドアップ量 〔kg〕 スケールアップの前後で平均滞留時間 T_R を等しくする ためには

$$T_{R\cdot s} = \frac{H_s}{F_{0\cdot s}} = T_{R\cdot L} = \frac{H_L}{F_{0\cdot L}}$$
(7)

が成立しなければならない。

エクセバ内のホールドアップHは次式で示すことができ る。

$$H_{s} = (4A_{s} + \pi D_{s}h_{\infty,s})\rho L_{s}$$
$$H_{L} = (4A_{L} + \pi D_{L}h_{\infty,L})\rho L_{L}$$

L:装置長さ

$$\frac{\mathbf{h}_{e\cdot s} \pi \mathbf{D}_{s} \rho \mathbf{L}_{s}}{\mathbf{F}_{0\cdot s}} = \frac{\mathbf{h}_{e\cdot L} \pi \mathbf{D}_{L} \rho \mathbf{L}_{L}}{\mathbf{F}_{0\cdot L}} \qquad (8)$$

となる。

エクセパは,クリアランスが一定であれば,単位浸辺長 当りの質量流量にかかわらず,ホールドアップ量は,ほぼ 一定である(第5図)ことから,スケールアップ前後にお いて

$$\mathbf{h}_{e\cdot s} = \mathbf{h}_{e\cdot L} \tag{9}$$

が成立すると考えることができる。

(9)式を(8)式に代入すると

$$\frac{F_{O\cdot L}}{F_{O\cdot S}} = \frac{D_L L_L}{D_S L_S}$$
(10)

となる。

エクセバでは、(10)式がスケールアップ前後においてクリ アランス一定で平均滞流時間を等しくするための条件であ る。

これを実際の装置で,処理量10倍のスケールアップを考 えると, (10)式よりスケールアップ前後において槽内径と長 さの積を10倍にすればよいことになる。これなら実装置へ の適用は可能である。

1.2 蒸発性能に関するスケールアップの関係式

通常,熱交換器や蒸発器では,伝熱面積に比例するとし てスケールアップが行われる。 エクセバは、薄膜部で蒸発が行われるので、薄膜部での 蒸発性能が スケールアップ 前後に おいて 等しいのであれ ば, 伝熱面積比例と考えてよいであろう。これは, 単位伝 熱面積当りの質量流量がスケールアップ前後において等し いので次式が成立する。

$$\frac{\mathrm{F}_{\mathrm{O}\text{-}\mathrm{S}}}{\pi\mathrm{D}_{\mathrm{S}}\mathrm{L}_{\mathrm{S}}} = \frac{\mathrm{F}_{\mathrm{O}\text{-}\mathrm{L}}}{\pi\mathrm{D}_{\mathrm{L}}\mathrm{L}_{\mathrm{L}}}$$

これより

$$\frac{F_{0-L}}{F_{0-S}} = \frac{D_L L_L}{D_S L_S}$$
(1)

となり、(10)式と同様の式が導かれる。

以上より,スケールアップ前後の流動状態における関係 式と蒸発性能における関係式が等しいことから,エクセバ のスケールアップの基本則は、「スケールアップ前後にお いてクリアランス一定で,伝熱面積当りの質量流量を等し くする」ことである。

スケールアップ前後におけるエクセバの蒸発能力を保証 するには、伝熱面からの熱伝達が等しく行われ各部での流 動状態が等しくなければならない。特にスケールアップ後 に蒸発性能に影響を及ぼすと考えられるディストリビュー タの一様な液分散、多段傾斜翼による薄膜の形成、薄膜部 とフィレット部の物質交換が十分行われる構造などに注意 を払う必要がある。

2. スケールアップにおける撹拌動力

エクセバの処理物質は、主にポリマーである。ポリマー は、非ニュトン流体で与えられる速度勾配によって粘度が 変化する。また、粘度が温度によって大きく変わる場合も ある。入口(原料)が低粘性で出口(製品)が高粘性の場 合ではエクセバ内で粘度が著しく変化する。以上の理由に より撹拌動力の予測は難しく、テストでの撹拌動力測定が 必要となる。

現在、テスト機での蒸発テスト時、撹拌動力を歪ゲージ で測定してパソコンにてオンライン処理している。その測 定した撹拌動力を基に実機へのスケールアップを行ってい る。蒸発テスト時に撹拌動力を測定しているので、同じ操 作条件とするとスケールアップ前後において処理物質の物 性は等しいと考えられる。スケールアップで撹拌動力に関 係するファクタは、処理量、翼形状、翼スパン、クリアラ ンス, 翼投影幅, 翼段数, 回転数であるが, これらは, 基 本的に1章 で述べた スケールアップ 則に従って 決定され る。クリアランスは、テスト機と実機で等しくし、回転数 は、撹拌翼の先端速度一定でスケールアップされる。これ によって,スケールアップ前後において内容液に作用する 速度勾配が等しくなるので,ポリマー粘度が等しくなり, **翼先端に 作用する力も同等 になると 考えられる。 翼形状** は,幾何学的相似則でスケールアップされるが, 撹拌動力 に影響する翼先端の板厚は、テスト機と等しくする必要が ある。

搅拌動力の無次元相関式³⁾は、次式で与えられる。

$N_P = A(R_{eM})^{\alpha}(R_{eL})^{\beta}(h_0/d)^{\gamma}$

ここで、 動力数 N_P、 撹拌 Reynolds 数 R_{eM}, 液膜 Reynolds 数 R_{eL} の各々の無次元数は次式で定義される。

$$N_{P} = \frac{P}{\rho \cdot n^{3} \cdot d^{3} \cdot h_{0} \cdot L}$$

(12)

MNo.100> 見積用計算プログラム (V1.0)		日付:'91年 08月 16日
推牲勤力武和	ENo.00-0-00 客先名	五 神鋼 パンテック(料)
テスト機 >	<実 機 >	
本体内径ds 155 mm	本体内径dL	0 mm
クリアランス δ s 🛛 🛛 mm	クリアランス δ L	0 mm
本体長さLs <u>440</u> mm	本体長さしし	Ø mm
回転数 n s	回転数 nL	0 rpm
供給量 Qs Økg/h	供給量 QL	0 kg/h
液密度 ρ s0 kg/m3	液密度 pL	0 kg/m3
供給液粘度 µ f 0 Pa·s	供給波粘度μ1	0 Pa·s
残留波粘度µr 0 Pa·s	残留液粘度µr	0 Pa·s
平均液粘度µs 0 Pa·s	平 均 液 粘 度 μ s	0 Pa·s
Ps Ø KW	PL	******** KW
针 算 結 果 >		
攪拌Reynolds数 Rems = *********	攪 拌 Reynolds数	Rem1 = *******
波 膜 Reynolds数 Rels = ********	液 膜 Reynolds数	Rell = *******
搅拌動力数 Nps = ********	攪 拌 動 力 数	Npl = *******
攪拌翼定数 A = *******	攪 拌 動 力	Pl = ******* Kw
	10 1	

第6図 撹拌動力計算の画面

Fig. 6 The calculated power comsumption display

[kg•m⁻¹•s⁻¹]

実機の撹拌動力は,テスト機の測定撹拌動力から(12)式の A値を求め,そのA値を用いて計算する。

第6図にパソコン画面上の撹拌動力計算の様式を示す。 テスト機での撹拌動力より、本計算式でスケールアップし た実機(EX-50)の撹拌動力の計算値と実測値を第1表 に示す。

第1表のA樹脂の撹拌所要動力値で,計算値と実測値に 相当な差があるが,モータ動力に比べて出力値が少ないの で,実測値に,測定誤差が含まれていると思われる。

 スケールアップにおけるスクリュ排出機の 吐出能力

エクセバは,製品払出部に1軸押出機の原理を適用した スクリュ排出機を設置している。これは,上部吸込口に高 粘度液が満たされていないが,本体が真空であってもある 一定の吐出圧で排出することができるように工夫されてい る。

テスト機のスクリュ排出機は、高粘度液では約30 rpm 中粘度液では約80 rpm と液粘度によって回転数を約30~ 100 rpm で操作して残留液(製品)の払出しを行ってい る。スクリュ排出機を製品払出し後の液の昇圧に用いるの は、エネルギー効率が悪いので、実機では吐出圧を 0.2~ 0.3 MPa,回転数20~30 rpmで、液粘度、吐出量を考慮し て次式よりスクリュ形状を決定している。

第1表 実測値と計算値の撹拌所要動力比較 Table 1 Comparisons between the measured and calculated power comsumption

				*
	EX-2	EX-50	P kW	Scale up
	P kW	Calculated	Measured	error
A Resin	0. 48 kW	17. 3 kW	12.4 kW	+39 %
B Resin	1.30 kW	37. 8 kW	29. 7 kW	+27 %

	$\mathbf{Q} = \alpha^* \mathbf{N} - \beta^* \frac{1}{\mu} \left(\frac{\mathbf{P}}{\mathbf{Z}} \right) - \gamma^* \frac{1}{\mu}$	$-\left(\frac{\mathbf{P}}{\mathbf{Z}}\right)$
	$\alpha^* = \frac{\pi \mathrm{DH}(\mathrm{t} - \mathrm{e}) \mathrm{cos}^2 \alpha}{2}$:推進流定数
	$\beta^* = \frac{\mathrm{H}^3(\mathrm{t} - \mathrm{e})\mathrm{cos}\alpha\mathrm{sin}\alpha}{12}$:圧力流定数
	$\gamma^* = \frac{\pi^2 D^2 \delta^3 \tan \alpha}{10 e}$:漏洩流定数
ここで	Q:吐出量	[m ³ ·s ⁻¹]
	N:回転数	[s ⁻¹]
	μ:粘度	[Pa•s]
	P:吐出圧	[Pa]
	Z:長さ	(m)
	D, H, t, e, δ は 第7図 に示	す。

実機(EX-50)は、多品種の樹脂を生産しており、その各品種間の粘度差は、約10倍程度であるが、本計算式で設計したスクリュ排出機は、回転数の変速範囲で余裕をもって製品を払出すことができている。

むすび

撹拌式薄膜蒸発機エクセバのスケールアップにおける流 動状態に関する関係式と蒸発性能に関する関係式が同一で あり、その意味するところを示した。さらに、エクセバの スケールアップで、撹拌動力計算式とスクリュの吐出量計 算式を実機へ適用することができることを確認した。

エクセバは,独自の機構を備えているがゆえに数々の特 長を有しており,テスト機で優れた蒸発性能を示してきた が,実機においてもその性能を実証しえたことを報告し た。

本稿が高粘度液の蒸発に携わっておられる方々に,少し でも参考になれば幸いである。

〔参考文献〕

- 1) Komori, S., K. Takata and Y. Murakami : Chem. Eng. Japan, Vol. 21, 639 (1988)
- 2) S. Komori, K. Takada and Y. Murakami : Chem. Eng. Japan, Vol. 22, 346 (1989)

3) 高田:九州大学工学部化学機械工学科,博士論文(1988)

無電解Niめっきの圧力容器への適用

Apply to the Pressure Vessels of Electroless Plating

This paper presents the fundamentals and characteristics of electroless plating, as well as its application to pressure vessels all of which will help to understand various technical problems associated with electroless nickel plating and its application to pressure vessels.

まえがき

めっきを利用して,素材に耐食性や耐摩耗性を付与する 方法の一つに無電解 Ni めっきがある。無電解 Ni めっき の歴史は決して新しいものではなく,1944年に米国で見い だされた後,1960年には各地で工業化に入っている。この めっきは, Ni 塩と次亜りん酸塩を主成分とする温浴中に 被覆物を浸せきし,化学的な還元作用によって行うもので ある。最近では,めっき液が大幅に改良され,コストダウ ンが進み非常に簡単な技術と設備でめっき作業が行えるよ

うになった。

当社では、すでにその特性に着目し、1980年に高効率重 合反応装置の内部ジャケット部に、冷却水に接する部分の 防食とU値の経年低下を防ぐことを目的に施工しており、 現在までに10基以上施工してきた。本稿ではこの施工実績 をふまえ、無電解 Ni めっきの概要を紹介する。

1. 無電解めっきの基礎

1.1 無電解めっきとは¹⁾

金属塩溶液から金属イオンを被めっき体表面へ還元し金 属被膜を作らせる技法に、電気めっき、置換めっき、およ び化学還元めっきの三つの方法がある。いずれも溶液中の 金属イオンがイオン価に相当する電子を受け取って被めっ き体表面に析出し、金属被膜として接着されることに変わ りはないが、それぞれの場合で電子の供給源を異にしてい る。それらをモデル的に第1図に示す。第1図の(a)は電気 めっきで、この場合は外部電源から運ばれる電子が陰極面 上で金属イオンに転移し、いわゆる陰極反応によって陰極 表面に金属破膜が形成される。そのとき対極として溶解性 の陽極を用いるならば、析出によって減少する金属イオン

Fig. 1 Models of plating

の補給は陽極金属の溶解によって自動的に行われ,電解中 めっき液の組成はほとんど変らない。もちろん,不溶解性 陽極を用いる場合はめっき液組成の変化がある。金属の析 出と溶解は流される電気量によって自由に調節できる。

第1図の(b)は異種金属のイオン化傾向の差異(溶液中に おける異種金属の電位差)を利用するもので,電気化学的 に貴の金属(M₂)イオンを含む溶液中に,電気化学的に卑 な金属(M₁)素地を挿入するとき,その卑金属の溶解によ って放出される電子が,溶液中の貴金属イオンへ転移し, 卑金属表面上に貴金属の被膜が形成されるものである。硫 酸酸性硫酸銅溶液中に挿入された鉄片上に銅めっきができ るのはその好例である。このめっきは溶液中で金属イオン が置換されてできるので置換めっきと呼ばれているが,め っき操作が被めっき体を金属塩溶液中に浸せきするだけで あるため,浸せきめっきとも呼ばれている。本法によるめ っき膜は非常に薄くてピンホールが多く,素地との密着も 悪いので実用上は少数の実施例があるにすぎない。

第1図の(C)は金属塩と可溶性還元剤(R)の共存する溶液 に被めっき体を接触させるときに得られるめっきで,還元 剤の酸化によって放たれる電子が金属イオンに転移し,金 層被膜ができるものである。操作上は浸せきめっきと同様 であるが,原理上は化学的還元に基づくものであるゆえ化 学還元めっきと呼ばれるべきものであるが,電気力によら ないという意味で一般に無電解めっきと呼ばれている。

1.2 無電解めっき反応と機構

無電解めっき浴は可溶性の金属塩と還元剤を主成分とし、錯化剤、浴安定化剤などを補助成分とするかなり複雑 な混合溶液である。次亜リン酸一還元型のNiめっき浴の 一例を第1表に示す。²⁾³⁾これらの浴は、液中ではめっき反応が起こらないよう還元剤は酸化速度の遅い次亜リン酸塩 を用いる。そこで温度を上げて(80~90°C)酸化速度の促 進を計るが、それでもなお次に示すめっき反応は進まない。結局、素地表面のめっき反応に対する触媒性の助けを かりて漸くめっきの生成が起こるよう浴が作られている。 そのため電流を用いることなく浴が安定でしかも浸せきし た素地表面にだけスムーズにめっき反応が進行するのであ る。一度めっきが析出するとそのめっき自体のもつ触媒活 性によって反応は継続され、時間と比例して膜厚が増大す る(自己触媒作用)。この自己触媒の作用を持たない金属

第1	表	無電解ニッケルめっき浴条件4)
Table	1	Conditions for electroless nickel plating bath

Components/conditions	Acidic bath ²⁾	Acidic bath ³⁾	Ammonium alkali bath	Caustic alkali bath	
Sulfuric acid (Nickel chloride)	0.08 mol/e	0.1 mol/e	0.1 mol/e	0.1 mol/ <i>l</i>	
Sodium acetate		0.2	_	_	
Lactic acid	i —				
Plopionic acid	0.3		_	_	
Sodium citrate	0.03	0.05	0.2	0.2	
Sodium hypophosphite		0.15	0.2	0.2	
Boric acid	-	-		0.5	
Ammonium sulfate (Chloride)	_	-	0.5		
Thiourea		3~5 ppm		_	
pH	4.5~5.5	5.0~5.5	8~9(NH4OH)	8~9(NaOH)	
Temp. (°C)	90	90	90	90	

第2表 無電解 Ni-P めっき膜の性質電気ニッケルめっきとの 比較⁽⁾

Table 2	Physical propert	ies of electrole	ss Ni-P	tilm	in
	comparison with	electro-nickel	plating		

	Electroless Ni-P	Electro Ni-P
Composition	Ni 89~91 %, P9~11 %	Ni 99.5 %
Structure	Non-crystalline	Fine crystalline
Fusion point	890 °C	1 450 °C
Electrical resistance	$60 \ \mu\Omega/cm$	Approx. 8.5 μΩ/cm
Thermal conductivity	0.010 5 cal/cm/sec/°C	_
Expansion coefficient	13×10 ⁻⁶ cm/cm/°C	
Reflection factor	49~50 %	
Specific gravity	7.9	7.7
Hardness	As plated at 500 ± 50 Hv	150~250 Hv normal bath
11	After heat treatment at 1025±50 Hv	400∼500 Hv gloss bath
Adhesion to iron	3 500~4 900 kg/cm ²	3 500~4 200 kg/cm ²
Elongation	3~6%	10~30 % normal bath, 5~15 % gloss bath
Abrasion resistance	13.7	14.7
Stress	Compression	Tension
Porosity	Mil in thick of 0.005 mm	Disappears in thickess
Magnetic factor	4.0%	37.5%
Homogeneous deposition	±10 % max.	Unfixed
Fine homogeneous deposition	Good	Bad unless additive is added
Plating rate	Approx. 0.025 mm/h	0.025 mm/h at 2 A/dm ²

はめっきできないので,無電解めっき可能な金属は限定される。Ni, Co, Cu, Ag, Au などが現在実用されている主なものである。めっきの基礎反応は次のようである。

酸性浴: $Ni^{+2} + H_2PO_2^- + H_2O \longrightarrow Ni^0 + H_2PO_3^- + 2H^+$ アルカリ浴: $(NiXn)^{2+} + H_2PO_2^- + 30H^- \longrightarrow Ni^0 + HPO_3^ + 2H_2O$ 主反応 水素の発生: $H_2PO_2^- + H_2O \longrightarrow H_2PO_3^- + H_2$ リンの共析: $H_2PO_2^- + (H) \longrightarrow H_2O + OH^- + P$ 副反応

一方,上記の諸反応がどのような機構にそって進行する のか? についても数種の説が提案されているがまだ定説 はない。最近,局部電池形成による電気化学的還元機構の 説⁴⁾ に基づくめっき反応の速度論的研究が相次いで発表さ れており⁵⁾,今やその主流になった感さえあるので,簡単 にこの説による無電解めっき生成の考え方を述べる。めっ き浴中に素地を浸すと,まず液中に溶存している Ni^{2+} , $H_2PO_2^-$, H^+ などの反応種が素地表面に吸着し,それぞれ の電位に応じて局部電池を形成する結果(第2図参照)そ の起電力が反応の駆動力となって上式に従いめっき反応が 進行する。

2. 無電解 Ni めっきの特性

無電解 Ni めっきの皮膜は, Ni と P の合金で, 第2 表に 示すような性質をもつ。めっき膜に入る P の量はめっき液

第3図 無電解Ni-P合金皮膜のIN, HCl 溶液30°C における分 極曲線 Fig. 3

Polarinzation curve of Ni-P alloy in IN, HCl solution at $30^{\circ}C$

の組成や,めっき条件によって変わるが,現在実用的に用いられているめっき浴からの皮膜は,ほとんどが 9~11 % Pの合金である。

2.1 耐食性

めっき膜に Pが含まれるため皮膜自体が不活性で,電解 質などに侵されにくいこともあるが,無電解めっき独特の 素材を完全に覆う効果が耐食性向上に大きく寄与してい る。第3表に無電解 Ni めっき皮膜の耐食性を示す。化学 的耐食性は純 Ni よりむしろすぐれ,非酸化性の酸に強 く,有機酸,か性アルカリ,希鉱酸のほかほとんどの有機 溶剤に対してすぐれた耐食性を示す。しかし Ni そのもの を侵す薬品や亜硫酸ガスなどには侵される。 Ni-P 合金の 皮膜は P の含有量(約8%以上)が増加することによって 非晶質構造となり第3図にその一例を示す。⁶⁾素地の影響 を除くためにガラス板に無電解法にて Ni-P 合金皮膜を作 成し,その皮膜の IN, HCI 溶液30°Cにおける分極曲線を 示す。Ni-P 合金の高耐食性は,溶液中に Ni が溶出し表 面に P の濃縮層が生成するためと考えられている。⁷⁾

3.2 硬度

無電解 Ni めっき膜の硬度は,熱処理を行う前の状態で は Hv 550~600 で,光沢電気 Ni とさほど変らないが, 熱処理によって最大 Hv 1100 程度まで上げることができ る,皮膜の硬化は 230 °C 以上ではじまり,温度の上昇と ともに硬度が増し,普通400 °C 付近で最高値に達する(第 4図)。この値は硬質Crめっき(Hv 800~900)を若干上ま わるものである。熱処理時間は400 °C の場合,10分で最大 硬度に達するとの報告もあるが,実際には1時間程度行う 場合が多い。250°C でも12時間以上かければ上記の値が得 られるといわれる。⁸ 加熱時の硬度は温度上昇とともに低

第3表	無電解ニッケル皮膜の耐食性	
Fable	3 Corrosion resistande of electroless	nickel ⁶⁾

Corrosive liquid Te	emperature	Immersion	Aeration	Test Period, weeks	Penetration, mils per year	Corrosive Liquid	Temperature I	mmersion	Aeration	Test Period, weeks	Penetration, mils per year
	'Kanigen,'	* as Deposi	ted			Petroleum, sour crude	R	т	No	2	0.001
						Rosin size : Concentrated	194 F (90C) refl	ux T	No	3	0.01
Acetylene bromide	R ^(a)	T (p)	No	3	No attack	50 percent	194F(90C) refl	ux T	No	3	0.06
Amyl alcohol	R	Т	No	24	No attack	Sodium : Cyanide, 5 percent	R	Т	No	4	0.5
Benzole	R	Ť	No	24	No attack	Hydrosulfide, 40 percent	R	T .	Yes	20	Slight weight gain
Benzyl acetate	R	т	No	. 24	No attack	Hydroxide, 72 percent	240F(116C) reil	ux T	No	16	0.07
Carbon disulfide	R	Т	No	21	No attack	Stearic acid	158F(70C)	Т	No	4	0.02
Carbon disulfide and water	R	T	No	21	No attack	Sulfuric acid : 1 percent	R	T	No	4	1.
Jobalt linoleate	R	т	No	16	No attack	5 percent	R	T	No	1	1.
Jlucose	R	Т	No	16	No attack	Tall oil, crude	R	T	No	12	0.03
Isoamyloctyl orthophosphate, 75 perce	nt R	T	No	3	No attack	Tall oil, refined	R	Т	No	32	0.02
Methyl alcohol	R	T	No	24	No attack	Tanning solution (Koreon)	R	T	No	3	0.05
Naphtha, odorless	R	T	No	3	No attack	Inionyl chloride, anhydrous	R	т	No	3	0.03
Petroleum white oil	R	T	No	3	No attack	Urea, 25 percent	R	Т	Yes	16	0.05
Photographic : Developer	R	T	No	4	No attack	Write a black of Cl	R	т _	Yes	16	0.05
riypo solution	R	T	INO	4	No attack	water, chlorine: 5 ppm Cl ₂	R	Т	No	4	0.02
Kerinery brine solution	к	T	INO	23	No attack	Water block by "	R	Т	No	4	0.01
Sodium : Carbonate, 10 percent	R	T	100	4	No attack	Water, deionized	R	Т	Yes	12	0.02
Hydroxide, 10 percent	R	T	INO	4	No attack	Water, deionized	120F (49C) reth	ux T	No	12	0.01
Acetic acid, 5 percent	R	T	No	4	0.8	Water, defonized	180 F (82C) reth	x T	No	12	Slight weight gain
Acetic acid, 5 percent	R	T	Yes	4	6.0	water, distilled	R	Т	No	4	0.03
Acetone	R	T	No	16	0.003		Heat Treated at	1380F (7	50C)		
Acetylene bromide, 1 percent water	R	Т	No	3	Slight weight gain		_				
Allyl chloride	. R	т	No	24	0.04	Acetic acid : 5 percent	R	Т	Yes	20	0.9
Aluminum sulfate, saturated	R	т	No	4	0.3	10 percent	R	'n	No	16	0.2
Ammoniated ammonium : Nitrate	R	' T	No	16	0.3	10 percent	R	т	Yes	8	1.
Nitrate vapo	r R	т	No	16	0.3	50 percent	R	т	No	20	0.2
Ammonium :						50 percent	R.	т	Yes	8	2.
Chloride saturated, 30 percet NH ₃	R	т	No	16	0.2	glacial	R	т	No	20	0.02
Hydroxide, 30 percent NH ₃	R	т	No	4	2.3	glacial	R	Т	Yes	8	1.
Phosphate, 5 percent	R	т	No	4	0.7	Ammoniated ammonium :					
Sulfate, saturated	R	т	No	20	0.05	Nitrate	R	т	No	12	0.03
Sulfate, 5 percent	R	т	Yes	8	1.2	Nitrate vapor	R	т	No	16	0.3
Sulfite, saturated	R	т	No	20	0.02	Ammonium :	-				
Thiocyanate	R	т	No	20	0.2	Hydroxide, 30 percent NH3	R	т	No	29	0.06
Amyl acetate	R	T ·	No	24	0.002	Hydroxide, 30 percent NH3	R	p(c)	No	24	0.2
Amyl chloride	R	т	No	24	0.01	Nitrate, 63 percent	R	т	No	28	0.1
Aniline hydrochloride, saturated	R	т	No	16	0.5	Nitrate, 63 percent	R	т	No	24	0.01
Beer	R	т	No	4	0.2	Sulfate, saturated	R	т	Yes	20	0.02
Benzyl alcohol	R	т	No	28	0.004	Sulfate, 5 percent	R	т	Yes	20	0.09
Benzyl chloride	R	т	No	16	1.	Beer	R	т	No	4	0.008
Black liquor skimmings	R	т	No	12	0.01	Calcium chloride : 48.5 percent	R	т	No	32	0.000
Boraxo, saturated	R	т	No	32	0.1	48.5 percent	R	T	Yes	20	0.001
Boric acid	R	т	No	8	0.5	Ethylene glycol	Standard corror	sion test		3	0.01
Calcium chloride : 48.5 percent	R .'	r T	No	32	0.008	Formaldehyde : 37 percent	я	т	No	28	0.007
48.5 percent	R	т	Yes	32	0.04	37 percent	R	р(с)	No	20	0.007
Carbon tetrachloride	R	т	No	32	0.005	HCl solution : pH 1.5	R	т Т	Vec	24	9
Cetyl alcohol, molten	160 F	т	No	8	0.008	pH 2.0	R	T	Vec	0	о, о с
Citric acid, 5 percent	R	T	No	16	0.03	pH 2.5	12	т Т	Vee	10	0.0
Citric acid, 5 percent	R	т	Yes	8	0.07	pH 3.0	R	Ť	Ver	12	0.0
Cresylic acid	R	T	No	16	0.002	pH 3.5	R	T	Vau	12	0.2
Detergent solution, 5 percent (Tide)	R	r	No	4	0.04	pH 4.0	7. 9	T	Ver	32	0.09
Dibutyl phthalate	R	T	No	8	0.006	Lactic acid : 45 percent	P	т Т	No	32	0.02
Diphenyl, molten	160F	т	No	8	0.009	45 percept	P	T	Ver	16	0.009
thyl alcohol	R	- T	No	24	0.007	80 percent	P	т Т	No	10	0.8
Pluorophosphoric acid	R	T	No	(12 days)	2	80 percent	P	т Т	NO V	32	0.006
Formaldehyde	R	T	No	16	0.2	Phosphoric acid 85 percent	p	1 T	Ies N-	16	0.2
Jasoline	'n	τ.	No		0.02	Sodium : Hydrosulfide 40 percent	+ 12	- -	140 V	20	0.008
HCl solution : pH 1.5	R ∵	· T	No	4	1	Hydrovide 72 percent	240E(116C) volt	т т	No.	24	Slight weight gain
pH 1.5	R	т т	Ves	-1	5	Sulfuria acid: 1 percent	240F (110C) Term		INO N	24	0.4
pH 2.0	R	Ť	No	4	0.9	5 percent	P	т Т	1 es	8	2.
pH 2.0	R	- T	Yes	19	3	5 percent	D	т т	140	16	0.4
oH 2.5	18	Ť	No	12	0.3	Urea 25 percent	R D	1	res	4	2.
nH 3.0	P	- T	No	4	0.5	Urea, 25 percent	ĸ	T	Yes	16	0.009
pH 3.5	TD I	т Т	No	4	0.1	Wine sharry	K Defeise a l	Т	Yes	16	0.008
nH 3.5	n	1 7	¥	4	0.07	Wine, sherry	Refrigerated	T	No	32	0.004
pH 4.0	n D	r	N-	4	v. 4	and annonium chioride	230 F (110C) refh	лх Т	No	4	2.
	ĸ	1	110	4	0.05	*Turdemedia Orace 1.4	· · · · · · · ·				
nsection	к	Т С	res	10	0.1	(n) D	a ransportation Co	rporation			
antin noid : 45 mercet	к	т	No	3	0.008	(a) K, room temperature, 65 t	to 85 F (149 to 18	5 C)			
Active actual; sto percent	ĸ	T	No	16	0.1	(b) T, total immersion.					
40 percent	R	Т	Yes	4	2.	(C) P, partial immersion.					
ou percent	R _	Т	No	32	0.05						
ou percent	R	Т	Yes	8	0.7						
who i percent and	R	T	No	4	0.2						
leic acid	R	Т	Yes	(23 days)	0.9						
Drange inice second	R	Т	No	10	0.008						
stanke juice, canned	R	т	No	4	0.01						

下するが,400°C 以下では硬質 Cr より, Ni-P が上まわ り400°C 以上では硬質 Cr の方が上まわる。⁹⁾

3.3 耐摩耗性

硬度の上昇とともに耐摩耗性も向上するが、これに関す るデータはいろいろにわかれている。最大硬度に達する熱 処理をしたものが、最小の摩耗値を示す例はもちろん多い が、硬度と耐摩耗性は必ずしも一致していない。600°C 以上で熱処理したほうが皮膜のもろさが緩和され、素材が 鋼の場合、拡散層が形成されて密着性と耐食性が向上し、 高荷重や衝撃の加わる過酷条件で耐摩耗性が向上するとい われる。¹⁰⁾

3.4 その他の性質

無電解 Ni めっき膜の引張強さは 440 N/mm² といわれ、電気 Ni めっき膜より若干強い。熱処理によってこの値はかなり減少する。¹¹⁾無電解 Ni めっき膜の内部応力は、鋼の上で約 30 N/mm^2 ぐらいの、弱い引張応力といわれている。これは素材によって違い、熱膨張係数の高い真ちゅう、Al などの上では圧縮、熱膨張係数の高い Ti, Be などの上では引張りとなる。¹²⁾

3.5 耐食性皮膜としての利用

石油精製関係の部品や,海洋環境に耐えなければならな い船舶部品などには,とくに向くといわれる。素材に耐食 性を与えることを第一目的とする場合は,めっきの厚みを

1 100

十分に厚くする必要がある。Ni-P の皮膜は銅合金やステ ンレス鋼に対しては卑であるが、鉄素材に対しては貴とな る。そのため鉄素地上の亜鉛めっきのように、めっき膜が 犠牲層となって素地を保護する作用はないから、素地を Ni-P 膜で完全に覆う必要がある。それには十分なめっき 膜厚と欠陥のない素地加工が必要である。耐食性を主体と する場合、めっきの膜厚は少なくとも25 μm 以上,できれ ば30 μm 以上ほしい。

4. 圧力容器への適用

4.1 めっき施工試験

第5図に無電解 Ni めっき実験フローおよび写真1にその外観を示す。20A短管およびモックアップ(写真2)を 使用し、各種実験を実施した。

本実験で得られた結果としては

- (1) めっき液の組成並びに操作条件は、めっき液販売メ ーカー間で、微妙に異なるが、結果として、ほとんど 差異は認められなかった。
- (2) 管内流速による影響では,面流速が0.5 m/s 以下で は,同一操作条件下で所定のめっき膜厚が得られた。

4.2 モックアップテスト

SS製モックアップ構造断面を第6図に示す。この構造 の目的は、ガス溜り部、隙間部および溶接部を設け、それ らの部位のめっき挙動を観察するためのものである。その

- ミクロ組織観察位置を第7図に示す。 その結果,
- (1) 写真3に示すとおり、上層部エ アー溜り部には当然めっきはつか ない。
- (2) 溶接部上および隙間部のめっき 状況は、写真4およびその断面ミ クロ観察の結果からいずれも良好 である。(写真5)

写真1 無電解 Ni めっき実験装置外観 **Photo. 1** Outside view of electroless Niplating experimental equipment

写真2 モックアップ外観 Photo.2 Outside view of mock up

- 第4図 熱処理温度とめっき膜の硬度 (熱処理時間1時間, 膜厚120 µm) Fig. 4 Plating film hardness vs, heat treatment
 - temperature (Heat treatment time 1 hr. film $120 \,\mu\text{m}$)

Fig. 5 Experimental apparatus for electroless Ni-plating

Fig. 6 Sectional view of mock up

4.3 実機への適用

プロセスおよび工事手順の概要を第4表に示す。

また実際の無電解 Ni めっき施工状況を写真6に示す。 4.3.1 判定基準

基本的には下記3とおりの方法にて総合判定する。

1)テストピース浸漬テスト

めっき液出入口間には Ni 濃度勾配があり,実測した 結果を第8図に示す。

したがってめっき膜厚はめっき液戻り口にテストピー スを吊り下げ,めっき前後の厚みをマイクロメータ(1µ 単位)にて測定するか,化学天秤にて重量測定し,めっ き厚みを時間換算する。

(例) めっき厚み30ミクロンの場合

2時間でテストピース測定し20 ミクロン であれば, 120分÷20=6分/1ミクロンとなり,不足分10ミクロン× 6分=60分の追加時間めっきする。

2) 定量分析テスト

めっき開始,終了間の Ni 消耗量を計算し,めっき被

す真3 めっき後の断面状況
 Photo.3 Sections of mock up after plating

享真 4 溶接部めっき状況 Photo. 4 Plating status at welds

Photographing position 4

第7図 ミクロ組織観察位置 Fig. 7 Microstructure observation

膜厚みを算出する。

表面積×比重×厚み=重量

3) 外観所見

各ノズル部よりライトなどにより,めっき表面状況を 観察し,光沢,色調,ザラツキ,異物の有物など調査す る。

4.4 その他

めっき槽内の液管理は、自動液補給装置(上村工業製) を使用し、Ni,塩、還元剤、錯化剤、促進剤、安定剤、pH 調整剤等の補給を自動管理できる。

5. 納入実績

当社が開発した高効率重合反応装置の構造¹³⁾を第9,10 図に示す。

内部JKTの冷却水に接する部分に防食とU値の経年変 化を防ぐ目的で、無電解 Ni めっきを施工している。 これらの納入実績を第5表に示す。

Photographing position 5

Photographing position 6

写真5 断面ミクロ組織 Photo.5 Microstructures of sections

?4

神鋼パンテツク技報

第 4 表 プロセス及び工事手順 Table 4 Process and work procedures

Process	Work procedures and remarks		
Surface preparation (Polymerizing vessel)	Apply shot blast equivalent to SPC 5, SSPC Standard. Afterward, grind nozzle welds for finish.		
Preparation for plating	Install operation pedestal, pumps and tanks. Perform piping, insulating, electric and scaffolding work. Perform leak test by test run with water followed by additional tightening, if necessary. Suspension of plating liquid and adjustment of acid liquid.		
Operation and heating of boiler	Heat polymerizes vessel and plating basin up to $80 \sim 90^{\circ}$ C.		
Washing with water	Carefully wash portions to be plated with water. If grease is found during washing operation, add deoiling process to remove grease.		
Acid treatment Perform acid treatment at tempera below 50°C at lower concentration short time.			
Washing with water	Continue washing with water until acid is completely removed, confirming with PH test paper that acid is not present.		
Plating	Perform plating for $2\sim3$ hours per batch by controlling temperatures at $80\sim95^{\circ}$ C, PH at $4.5\sim4.8$ aand Ni concentration at $4.5\sim4.8$ g/l.		
Wahing	Continue washing wath water until plating liquid is completely removed, confirming with color that liquid is not present.		
Alkali treatment	Perform washing with low-concentration alkali.		
Washing with water			
Drying	Dry with air (7 K air)		
Inspection	Visually inspect internal surface through nozzle.		
Washing with water of attached apparatuses after diassembly	Wash plating apparatuses with nitric acid.		

写 真 6 無電解Niめっき施工状況 Photo. 6 Status of electroless Niplating process

む す び

無電解 Ni めっきおよびこれによる圧力容器への適用に 関する技術的諸問題について、当社で実施した実験結果を もとに、若干の文献を引用しながら解説した。この解説が ユーザの方々にとって少しでもご参考になるならば幸甚に 思う。

〔参考文献〕

- 1)石橋知:無電解メッキ、(1968)、朝倉書店
- 2)前出1)
- 3) A. Brenner, C.H. de Minjer: Plating. 43, 1297 (1957)

第 5	表	無電解 Ni メッキ納入実績
Tabl	е 5	Electroless Ni-plated installations

- 4)石橋知:金属表面技術, 12, 447 (1961)
- 5) 大野湶:ibid, 29 600 (1978), 春山志郎, 古沢郎, 大野湶, ibid, 30, 289 (1979)
- 6) 小若正倫·阮永豊:金属, 6, 8 (1990)
- 7) R.B. Diegel, et al.: J. Electrochem. Soc., 135, 1085 (1988)
- 8) W.G. Lee: Plating, 47, 289 (1960)
- 9) International Nickel Co., Inc., The Engineering Properties of Electroless Nickel Deposits (1971)
- 10) G. Gutzeit, E. T. Mapp: Corrosion Technology, 3, 331 (1960)
- 11) 前出 9)
- 12) K. Parker. H. Shah: Plating, 58, 230 (1971)
- 13) 井上一夫・太田克久・富沢藤利・榎木正・平井等:化学工学 55,487 (1991)

コボール・ミルの粒子微細化特性

Study on Particle Size Reduction by CoBall-Mill

Stirrer ball mill has been focused on ultrafine grinding. CoBall-Mill, a kind of annular type stirrer ball mill, is studied on the grindability in various operation methods. Continuous (both one through and iteration) and batch-wise grinding test give the same result with mean diameter and distribution of particles. It means that the grindability of CoBall-Mill is easily estimated by residence time. The effect of the rotating speed on the grindability can be standardized with a new idea called "grinding length" which shows how long particles and media are rubbed by the rotor. Then a closed-circuit recirculation system is simply modeled and calculated. Comparing this with test result, it shows good coincidence. This model gives a guide to design an actual grinding process.

まえがき

各種産業のファイン化指向の中で,連続微粉砕機として 開発されてきた媒体撹拌型ミルは,粉砕室内に充填したメ ディアを流動化し,その相互間に働く衝撃力および剪断力 を利用したものであり,現在最も注目をあびている粉砕機 である。

媒体撹拌ミルの一機種であるアニュラータイプのコポー ル・ミルについては、すでに基本的な粉砕特性について報 告するとともに¹⁾、そのスケールアップの考え方について も実験結果に基づき紹介した²⁾。ここでは、主として粉砕 処理形態の差異による粉砕性への影響を調べるとともに、 粉砕結果の統一的な整理方法を検討し、また、実際の粉砕 処理プロセスへの応用として閉回路粉砕を取り上げ、粉砕 特性の解析手段の一つとしての簡単なモデル計算を行い、 実験との比較を試みたので次に報告する³⁾。

1. 実験装置および方法

1.1 実験装置

実験に使用したコボールミル MS-12の構造を第1図に 示す。ミル本体材質はマルテンサイト系ステンレス鋼であ り、断面が逆三角形をした環状の容器内部で、回転軸に取 りつけられた同じ断面形状のロータが回転している。容器 とロータとの間のギャップを粉砕室とし、ここに粉砕メデ

ィアを充填する。サスペンジョン化した砕料はギアポンプ (大東工業製HP-2)により送液され、ミル下部の入口ギ ャップを経て、W型の粉砕室へ導かれ、そこで粒子が粉砕 される。処理された砕料は、ギャップ・セパレータでメデ ィアと分離され、ミルから排出される。メディアはW型の 粉砕室を順次移動していき、ロータ・ハブ部のメディア循 環用通路からミル内の粉砕室入口に帰還され、再び循環し ていく。メディアの循環は遠心力とポンプの送液圧力およ びメディア循環用通路によるポンプ作用により行われる。

1.2 実験方法および実験条件

粉砕処理として,一パス連続処理,繰り返し連続処理, バッチ処理,および閉回路連続処理の4種類の運転条件に より行った。

ーパス連続処理は,第2図に示すように,フィードタン クより砕料を 撹拌しながら ギアポンプによりミルに 送液 し,一回通過の砕製物を製品タンクに受け入れる方法であ り,比較的処理のしやすい砕料に対して実用化されている 方法である。

繰り返し連続処理は、一パス連続粉砕を行った砕製物を すべて製品タンクに回収し、その回収したサスペンジョン をフィードタンクに戻し、再び粉砕する操作を繰り返し た。これはーパスでは粉砕が難しい場合に、ミルを直列多 段に使用される場合を想定している。

バッチ処理は、比較実験のために行ったものであり、砕 料を粉砕室に送り込んだ時、ミルの砕料入口と製品出口を ふさいでからロータを回転させた。媒体撹拌ミルは一般に は連続使用されるものであり、バッチ処理はアトライター など一部の撹拌媒体ミルにおいてしか実施されておらず、

第2図 実験装置 Fig. 2 Test equipment

神鋼パンテック技報

第3図 D₅₀の粉砕時間経過 Fig. 3 D₅₀ v.s grinding time

コボール・ミルにおいてはこのような実施例はない。

さらに閉回路連続処理は、砕料を連続的にフィードタン クからミルへ送り、砕製物はそのままフィードタンクへ戻 す操作を連続で行った。これは、一般的な連続プロセスを 想定したものである。

砕料としては重質炭酸カルシウム(丸尾カルシウム(株) 製 商品名スーパーS $d_{50}=10 \le 0$ ロン)を、イオン交換 水中に分散したものを 固液比(真体積)1:5と1:20 とで 使用した。

実験は、粉砕メディアとして直径1~1.5 mmのジルコン メディア (SEPR 社製 充填密度2.4 kg/m³)を用い、充填 率を70%一定として行った。またロータ周速については、 15 m/s と7.4 m/s の二水準にて行った。

砕製物のサンプリングは,連続処理の場合にはミル出口 より直接行い,バッチ処理では砕製物をメディアとともに 取り出し,篩によりメディアを分離した物をサンプルとし た。

砕料および砕製物の粒度分布は,光透過式遠心沈降法に よる粒度分布測定機(セイシン企業製 SKA-5000)を用 いた。

なお粒度分布測定結果に対するメディア,ミル機壁から の摩耗成分の影響については,使用前後のメディア重量の 変化,また I.C.P 法による砕製物中の鉄分の定量により検 討し,本実験範囲では,粒度分布に対し摩耗成分の影響が 無いことを確認した。

2. 実験結果

2.1 粉砕速度

粉砕時間に対する砕製物の重量基準50%径(D₅₀)の変 化を**第3図**に示す。各粉砕条件に対する粉砕時間の定義は 次による。

1) ーパス連続処理

$$\tau = (V - V \text{med})/Q \tag{1}$$

ここで、Qは処理するサスペンジョンの流量を単位時間 当たりの体積で表わしたものであり、Vは粉砕室の有効体 積、Vmed はメディアの実体積である。Vmed はメディ アのみかけの体積から、充填メディア間の空間体積を引い た値である。

2)繰り返し連続処理

繰り返し操作における各通過ごとの平均滞留時間を積算

Fig. 4 Particle size distribution of CaCo₈

したもの。

3) バッチ処理

バッチ運転時の運転時間の累計。

第3図において、D50は両対数グラフ上で、粉砕時間に対し直線的に減少するとともに、粉砕時間がほぼ20分で1 ミクロン以下となっている。このとき1ミクロン以下の微 粒子は重量基準で約70%であった。また粉砕操作の如何に よらず、D50はロータ周速が一定であればほぼ一本の直線 上に乗っていることがわかる。

さらに,粉砕操作および固液比の異なる結果について, 同程度の粉砕時間での粒度分布を比較したものを第4図に 示す。図はロータ周速15 m/s で,粉砕時間約45秒におけ る,固液比1:5の連続処理とバッチ処理,および固液比1: 20の連続粉砕の結果を示した。これらの粒度分布はいずれ も良好な一致を見せている。

第3,4図からコボールミルは、本実験範囲において、 処理するサスペンジョンの固体濃度が変化しても、粉砕時 間に対する平均径の減少の傾向が同様であるばかりでな く、その場合に得られる砕製物の粒度についても、同様な 粒度分布を有していることがわかった。

2.2 ロータ周速の影響

第3図によればロータ周速の速い方が粉砕速度も速いこ とが示されている。ロータ周速の影響について調べるため (2)式で定義される ^N粉砕距離Lⁿ という概念を導入する。

$$\mathbf{L} = \mathbf{U} \cdot \mathbf{T} \tag{2}$$

ここに、Uはロータ周速(m/s)、Tは粉砕時間(s)で ある。このLは、ロータが砕料を摩擦した距離に対応して いると考えられる。第5図に、種々の実験条件のもとでの 粉砕距離とD50との関係を示した。媒体撹拌ミルの粉砕機 構としては、剪断力によって粉体を摩砕していく作用が支 配的であるため、粉砕の進行はこの粉砕距離によって整理 されると考えられる。図よりD50は実験範囲では粉砕距離 Lのみの関数になっており、次式で表わされる粉砕速度の 実験式を得た。

$$D_{50} = 10.8 L^{-0.238} \tag{3}$$

2.3 閉回路連続処理

閉回路粉砕プロセスにコボールミルを適用する場合の粉 砕特性について,簡単なモデルにより考察し,実験結果と 比較する。

第5図 粉砕距離によるD50の変化 Fig. 5 D50 v.s grinding length

まず簡単化した閉回路粉砕のモデル計算を試みる。閉回 路粉砕の概念を**第6図**に示す。

実際の粉砕原料には粒径分布が存在するが,これをすべて D_{50} の粒子からなる単分散粒子群と考え,粉砕は第5図に示されるような粉砕曲線に従って進行すると仮定する。このとき閉回路粉砕中のフィードタンク内に存在する粒子の粒径はミルを通過した回数で決まるため,n回ミルを通過した粒子の粒径を D_n ,その粒子の全体に対する重量割合を $A_n(t)$ と表わす。またタンク内の体積をV,フィード流量をQとする。ミル内ホールドアップと砕料がミルを通過するのに時間を無視し,タンク内を完全混合槽と仮定すると、マスバランスより次の式が成立する。

$$\mathbf{V} \cdot \mathbf{d} \mathbf{A}_{\mathrm{o}} = -\mathbf{Q} \mathbf{A}_{\mathrm{o}} \cdot \mathbf{d} \mathbf{t} \tag{4}$$

$$V \cdot dA_n = +QA_{n-1} \cdot dt - QA_n \cdot dt (n \ge 1)$$
(5)

また

$$\Sigma A_i = 1$$
 for all t (6)

$$t=0$$
 のとき $A_0=1$, $A_n=0(n\neq 0)$ (7)

上記の微分方程式は解けて、粒径 D_n のミルn回通過粒子の重量割合 A_n は、k=Q/Vとおくと

$$A_{o} = \exp(-kt) \tag{8}$$

$$A_n = (1/n!)k^n t^n exp(-kt) \qquad (n \ge 1) \tag{9}$$

で与えられる。

ここで,サンプリングをミル出口側で行っていることを 考慮すると,砕製物の50 %粒径がDnになる時刻 tn は,次 式の解として得られる。

$$\sum_{i=0}^{n-2} A_i(t_n) = 0.5 \tag{10}$$

閉回路粉砕実験は V=3000(cc), Q=10.3(cc/s) の条件 で行い,この時のミル内滞留時間は34秒程度,ロータ周速 15(m/s)で,粉砕距離にして L=540 m にあたる。実験結 果と計算結果を第7図に示す。実験結果とモデル計算の結 果は良好な一致を示しているので,この方法により本ミル を閉回路粉砕プロセスに適用する場合の粉砕特性が推算で きると考える。

むすび

コポール・ミルの粒子微細化特性に関し、炭酸カルシウ ムを砕料とした実験を行い、その結果次のことが明らかに なった。

- 同一ロータ周速での粉砕において、運転操作が一パス 連続、繰り返し連続、バッチのいずれの形態であって も、ミル内滞留時間が同じであれば、砕製物の粒度分 布を含め、同一の粉砕結果が得られた。
- 2)ロータ周速を変化させた場合の粉砕結果を、粉砕距離 という概念を導入することにより統一的に整理できる とともに、粉砕速度の実験式を得た。
- 3) この粉砕速度式を用いて、閉回路粉砕についての簡単 なモデル計算を行い、実験結果との良好な一致をみ た。これにより、実際の粉砕プロセスにコボール・ミ ルを適用する場合に粉砕特性の推算ができることが示 された。

コポール・ミルは、パス回数でなく滞留時間を制御する ことにより、砕製物の平均粒径を制御できることを報告し てきた²⁾が、今回平均粒径だけでなく粒径分布についても 同様なことが実証できた。

コボール・ミルの持つ諸特性, すなわち, 粉砕室容積に 対する冷却面積の比が大きいため製品の温度コントロール が容易にできる, メディアが粉砕室内を循環するために高 粘度域のサスペンジョンを処理できる, 洗浄性に優れるな どの特長とあわせ, 広く応用性のあるミルとしてユーザ各 位の期待に沿っていきたいと考えている。

なお本研究は,法政大学修士課程森田優氏の卒業研究と して東京大学生産技術研究所山本研究室にて行われたもの である。

- 〔参考文献〕
- 1)谷口,平尾,田中:粉体工学会誌,22,6,376(1985)
- 2)谷口,田中:粉体工学会平成2年春期研究発表会講演要旨集 1 (1990)
- 3)谷口,山本,森田:粉体工学会平成3年春期研究発表会講演
 要旨集121(1991)

嫌気処理におけるシリンジテスト

A Syringe Test Method for Anaerobic Treatment

環境装置事業部 技術室 山 崎 慎 – Shinichi Yamazaki

A syringe test has been considered as an simplified batch test to estimate anaerobic biodegradability of waste water. But its test method does not define how to maintain the optimum pH range of a medium and to select the optimum ratio of a substrate and sludge in a syringe, both of which significantly affect the biodegradability. By clarifying the influence of these factors, we developed a new test method. The comparison using the test method confirmed that the biodegradability was generally low in chemical wastewater than in food processing wastewater. Also, the biodegradability shown by the syringe test was about half compared with that by the pilot test presumably owning to the acclimation time required.

まえがき

現在,廃水の嫌気分解性を評価するバッチテストとして 当社ではシリンジテストを行っている。本テストは,廃水 の嫌気分解性の評価に限らず,実装置の処理性能が悪化し た時など,その原因を調査するための重要なテストとして 考えられている。また短期間で結果が得られる上に,操作 が簡便で,幅広く応用できる利点も有している。

しかし最近,嫌気性処理が化学産業分野をはじめ適用範 囲の拡大に応じ,従来のテスト方法に幾つかの問題点が生 じてきた。

そこで,まずテスト方法を見直し基準化を行い,高精度 のテスト法を確立した。そしてこの基準法により,実廃水 を想定した化学物質を含む人工廃水を用い嫌気処理適用判 定図を作成し,実廃水でその適用性を示した。またその人 工廃水中の化学物質の分解性および阻害性の評価,実廃水 による阻害形態の検討も行った。

さらに,シリンジテストから得られる活性度から容積負荷を推定し,どの程度実装置の処理性能をシリンジテスト で推定できるかの検討も行ったのでその結果を報告する。

1. 従来法の見直し

1.1 最適 pH の維持

従来法のシリンジ内培養液の pH を7に維持するための 緩衝液は NaHCO₂ を使用していた。しかし従来,廃水の 種類により緩衝能が異なるなどの考慮がされておらず,ま た NaHCO₃ では緩衝能が低く,多量の投入はNa阻害を及 ぼすとの報告もある¹⁾²⁾³⁾。

そこで緩衝液をリン酸カリウムに変更し、ガス化率の比 較実験を行った結果を第1図に示す。テスト方法は3章に 記述し、テスト基質はグルコースを用いた。ここで図中の F/M 比とはシリンジ内に投入する廃水濃度と汚泥濃度の 比(gTOC/gSS)である。

リン酸カリウムは F/M 比1.3まで pH 約7を維持した

が、NaHCO₃ は F/M 比 0.3以上で著しく pH が低下し、 ガス化率も減少した。従って、緩衝液はリン酸カリウムの 方が適していることを確認した。また本実験結果はグルコ ースを単一基質としたために50 mM でテストを行ったが、 実廃水においては 100 mM、場合によっては 200 mM の緩 衝液濃度が必要であることも判明した。

1.2 F/M比の最適化

ガス化率はシリンジ内の F/M 比が高くなる程低下する ことが従来の結果から得られている。これは廃水中に含ま れる阻害物が 生物に影響を 与えたことが 原因と 考えられ る。そこで数種類の食品系, 化学系廃水について F/M 比 とガス化率の関係を評価した。その結果を**第2**図に示す。

F/M 比が高くなると 生物に阻害を与える物質の量が多 くなるなどの理由によりガス化率は低下した。 従って F/

いては数とおりの F/M 比を設定する方が望ましい。

1.3 テスト精度の向上

従来法の嫌気分解性はガス化率のみで評価していた。し かしこの方法では、培養初期のガス発生に lag time が生 じた場合(汚泥の馴養が必要)やガス発生速度が遅い場合 (汚泥中の菌体数が少ない,廃水中の阻害物の影響),実 際の廃水処理能力が把握できない。そこでガス化率に加え てTOC除去率,活性度(培養開始直後の最大ガス発生速 度)を評価基準に加え,テスト精度を高めた。

1.4 処理適用判定基準の明確化

従来は、判定基準があいまいで、処理可能性の判断に個 人差が生じた。そこで分解性の良い廃水から阻害物を含む 廃水まで人工的に作成しテストを行い、ガス化率、**TOC** 除去率および活性度によりその廃水の分解性を分類し、嫌 気処理適用判定基準を明確にした。また廃水中の阻害物の 影響についても検討を加えた。

基準化したテスト方法

2.1 使用溶液

テストには、グルコース溶液、廃水、汚泥、緩衝液およ び栄養溶液を使用する。ここでグルコース溶液は、使用汚 泥の活性状態の確認のために投入する(シリンジ内濃度 $3\,000\,mgTOC/\ell$)。廃水はシリンジ内濃度で $600\,mgTOC/\ell$ (F/M比0.2に対応)になるように調整したもの。汚泥は、 食品廃水処理嫌気リアクター引き抜き汚泥を32メッシュふるいで沪過したもの(シリンジ内濃度 $3\,000\,mgSS/\ell$)、緩 衝液はリン酸カリウム(シリンジ内濃度 $100\,mM$ あるいは $200\,mM$)、栄養溶液は少量のビタミン、微量金属塩(Fe, Mg, Ca, Co, Ni)、酸化還元指示薬および還元剤(Na₂S・ 9H₂O、システイン HCl 各々シリンジ内濃度250, 125 mg/ ℓ)の混合液とした³⁾⁴⁰⁵。

2.2 テスト方法

第3図にテスト仕込み条件を示す。テスト方法は、まず

各使用溶液濃縮液 を 嫌気的 に ガラスシリンジ (容量 100 m ℓ)中に所定量投入し総量40 m ℓ とする。シリンダーを押し上げシリンジ内のガスを抜き,ゴム栓をし,2本の注射 針を介して窒素ガスで約5分間パージする (第4図)。次に35°C の恒温室で培養し,経時的にガス発生量を測定する。数日後ガス発生が停止したのを確認後,培養液を取り出し,遠心分離(4°C,15000 rpm,10 min)上澄液の pH, TOC, VFA を測定する。ここで pH が6.6~7.5の範囲に なければ緩衝液濃度を高め最実験を行う。

2.3 嫌気分解評価方法

評価は、ガス化率、**TOC**除去率および活性度の3指標 によって行う。各々の算出方法を式(1)~(3)に示す。

 $ガス化率(%) = \frac{発生ガス量(Nm\ell)}{投入TOC量(mg-C)} \times \frac{12 (mg-C)}{22.4(Nm\ell)} \times 100$(1)

第5図 人工廃水による嫌気分解判定図Fig. 5 Anaerobic biodegradability judgment diagram by artificial wastewater

第1表 供試化学物質

Table 1Test chemicals

-			
	A. ALCOHOLS	C. KETONES	19. Succiric acid
	1. Methanol	10. Methylethyl ketone	20. Adpic acid
	2. Ethanol	11. Acetone	E. ESTERS
	3. Propanol	D. CARBOXYLIC ACIDS	21. Methl acetate
	4. Butanol	12. Formic acid	22. Ethyl acetate
	Ethylene glycol	13. Acetic acid	F. AROMATIC COMPOUNDS
	6. Glycerol	14. Propionic acid	23. Phenol
	B. ALDEHYDES	15. Butyric acid	24. Benzyl alcohol
	Form aldehyde	16. Palmitic acid	25. Benzoic acid
	8. Acetoaldehyde	17. Stearic acid	26. Salicylic acid
	9. Propion aldehyde	18. Oleic acid	27. Phthalic acid

活性度

$$(gTOC/gVSS \cdot d)$$
 = 開始時汚泥濃度(mgVSS) ×
12 (mg-C)
22.4(Nmℓ)(3)

3. 処理適用判定基準の明確化

3.1 人工廃水による判定基準の作成

第5図に嫌気性処理判定図を示す。図中のデータは人工 廃水でテストを行い, グルコース(シリンジ内濃度 2000 mgTOC/ℓ)をベースとして実廃水中に含まれると考えら れる**第1表**の27種類の化学物質(シリンジ内濃度 100~ 1500 mgTOC/ℓ)を各々投入したものを使用した。判定は ,ガス化率,TOC除去率,活性度の3指標で決定されて おり,この4領域(A~D)の分類は,その領域における 物質の分解性および阻害性を文献⁶⁷⁷⁸⁹などから考察して, ほぼ妥当と考えられる。

ガス化率60%以上において活性度 0.17 gTOC/gVSS・d 以上の領域A廃水は,実装置への適用に全く問題ないとい える。また 0.17 gTOC/gVSS・d 未満の領域B廃水も,馴 養すれば活性度は増加すると考えられ,嫌気分解は良好と 考えられる。しかし領域C廃水はガス化率20~60%と嫌気 分解可能だが,実装置へ適用した場合,低負荷が予想され る。従って,廃水中に含まれる阻害物の嫌気分解に与える

Factory	Manufacturing waste water	Gasfication ratio (%)	Activity (gTOC/gVSS•d)	Judgement
I	Starch	60	0.04	В
II	Starch	56	0.04	C
III	Boil bean	65	0.03	В
IV	Chemicals	72	0.11	B
V	Chemicals	38	0.09	C
VI	Dyestuffs	44	0.07	C
VI	Organic solvent	0	0.00	D
VIII	Washing wool	29 ·	0.005	C

第6図 実廃水による嫌気分解判定図

Fig. 6 Anaerobic biodegradability judgment diagram by practical waste water

影響(阻害濃度および 形態) を調査することが必要 であ る。領域D廃水は嫌気分解不可能と考えられる。

3.2 実廃水による嫌気分解の判定

第6図に実廃水による嫌気分解判定結果を示す。食品廃水において、工場Ⅰ、Ⅱの廃水(領域B)は馴養すれば処理適用可能と判断できるが、工場Ⅱ(領域C)の廃水は処理しても低負荷が予想される。従って、廃水中の繊維状のSSあるいは蛋白質などの高分子物質が分解性を低くした大きな要因と考えられ、その影響濃度等の調査を行った上で適用の判断をする必要がある。また化学廃水においても、工場Ⅳを除いて、全体的に判定C(工場V, Ⅶ, Ⅶ)の傾向が強い。(工場Ⅶは適用不可。)従って、実装置への適用に対しては、廃水中に含まれる阻害を与える化学物質などの影響について検討する必要があると判断される。

3.3 化学物質の分解性および阻害性

人工廃水中の化学物質の分解性および阻害性の調査は, 3.1 でテストしたTOC除去率を用いて評価した。しかし このTOC除去率はグルコースおよび化学物質の両方を伴 っている。そこで次のように化学物質分解率,阻害率を 式(5),(6)に定義する。

T-TOC 除去率 : グルコースおよび化学物質の両方を伴 う場合の **TOC** 除去率

G-TOC 除去率: グルコースのみの場合のTOC除去率

[T-TOC 除去率>G-TOC 除去率の場合]

第8図 ガス化率と阻害物含率の関係 Fig. 8 Relationship of gasfication ratio and toxic ratio

阻害率(%)=
$$\frac{T-TOC除去量(mg-C)}{投入グルコース量(mg-C)} \times 100$$
 ……(6)

第7図に化学物質の嫌気分解率および阻害率を示す。図 中の物質は特長的なもののみを示した。得られた結果を次 に示す。

- アルコール, 低級脂肪酸, エステルは, この濃度域 (汚泥3 000 mgVSS/ℓ に対する)では全く問題ないこ とを確認した。
- 2) アルデヒドは僅か数 100 mgTOC/ℓ でメタン菌のみな らず酸生成菌にも阻害を与え,またアルキル基が少な いほど阻害効果が大きいことを確認した。
- ケトンは阻害性はないが、難分解性物質であることを 確認した。
- 4) 高級脂肪酸はコハク酸が分解性が良かった他は難分解 性物質であり、中でもオレイン酸は数 100 mgTOC/*e* でメタン菌に著しい阻害を及ぼすことを確認した。
- 5) 芳香族化合物は,フェノールが約1000 mgTOC/ℓ で 著しい阻害を及ぼした他は特に大きく阻害を及ぼすも のはなかった。しかしその物質自体の分解性は概めて 遅いことを確認した。

この結果はあくまで目安であり,実廃水中には多種多様 の化学物質を有している。従って,廃水中の菌体を阻害さ

第9図 ガス化率と阻害物濃度の関係

Fig. 9 Relationship of gasfication ratio and concentration of toxic matter

せる化学物質を特定化する分析技術の向上が現在緊急に要求される課題と考えられる。

3.4 実廃水の阻害物質の影響濃度および阻害形態の検討

阻害濃度および形態を検討する実廃水として,A社化学 薬品製造廃水を使用した。実験条件として,F/M比を0.4 に設定し,廃水濃度および汚泥濃度を2とおりに変化させ たものを作成した。そしてその廃水に阻害物を濃度比で0 ~20%混入させて,その阻害物の影響を検討した。

第8図にガス化率と阻害物含率の関係を示す。廃水濃度 /汚泥濃度=1200 mgTOC/ℓ/3000 mgSS/ℓ の場合,阻害 物含率が20%に増加してもガス化率は変化しない。一方, 3000 mgTOC/ℓ/5000 mgSS/ℓ の場合は含率が10%以上 で著しい低下を示した。従って,阻害形態は阻害物の汚泥 に対する相対濃度ではなく,阻害物の絶対濃度に起因する ことを確認した。また第9図にガス化率と阻害物濃度の関 係を示す。本廃水に対する阻害物の影響濃度は50 mgTOC /ℓ 以上と判明した。

4. 実装置(パイロット 装置)との整合性の検討 前章より、シリンジテストによる廃水の嫌気性処理判定 基準が明確となったが、実際上、実装置の処理性能までこ のシリンジテストで評価するのは汚泥の馴養化、スケール アップ上の問題などにより困難である。しかしあらかじめ どの程度容積負荷をとれるかを予測することは重要と考 え、式(7)により、シリンジテストの活性度から実装置の容 積負荷を推定した。

 $\cdots (7)$

次に室内パイロットテストによりこの 推定式を 実証した。テスト装置は101の塩化ビニル製カラムを3基使用し、 充填材としてポリプロピレン製のメディア($65 \text{ m}^2/\text{m}^3$)を 充填した。テスト廃水はB社化学薬品製造廃水を用い、実 験開始前の各リアクターの汚泥条件を第2表に示す。そし て培温度36~37°C で連続実験を行い、段階的に容積負荷 を上昇させた。

低負荷時においては, 各リアクターの処理水質は1000 mgTOD/ℓ以下 (VFA 100 mg/ℓ以下), TOD除去率85

第2表 培養開始時および終了時の処理性能 Table 2 Treatment performance

	Start	Finish				
Reactor Sludge concentration		Sludge concentration	Treatment water		Maximum load	
	[mgSS/ ℓ]	[mgSS/ ℓ]	[mgTOD/ ℓ]	$[{\tt mgVFA}/\ell]$	[kgTOD/m³·d]	
1	5 000 (5 000)	6 160 (4 960)	1650	630	5.0	
2	5 000 (0)	3 940 (2 290)	$1\ 000$	272	3.5	
3	5 800 (800)	4 370 (3 040)	1 010	242	4.0	

() is fixed sludge concentration in reactor.

%以上,ガス化率62%以上を維持した。しかし,負荷の上 昇に従い処理水質は悪化し,ガス化率も低下した。この時 を限界容積負荷とし,実験終了後,汚泥をリアクターより 取り出しSS測定を行った。

第3表にシリンジテスト活性度より算出した容積負荷と ,パイロットテストの限界負荷との比較を示す。ここでシ リンジテストの負荷は活性度 0.12gTOC/gSS・d (実験値) で算出した。またパイロットテストの負荷はTOC/TOD= 0.3 を乗じている。シリンジテストの推定値は,パイロッ トテストと比較して約半分の負荷を示し,これは汚泥の馴 養状態の違いによるものと考えられる。今後さらに検討を 重ね,この整合性を明確にする予定である。

むすび

従来のシリンジテストを見直すことにより,次の知見が 明白となった。

- 1)テスト時間の短縮,高精度のテスト法を確立し,手法の基準化を行った。
- 2) 不明確であった嫌気処理適用判定法も、人工廃水を使 用し、妥当性のある判定図を作成した。また実廃水に よってこの判定図を検証した結果、意外に判定の評価

第3表 シリンジテストとパイロットテストの容積負荷の比較 Table 3 Comparison of load of of syringe test and pilot test

n (Load $(kgTOC/m^3 \cdot d)$				
Reactor	Syringtest	Pilot test			
1	0.74	1.5			
2	0.47	1.1			
3	0.52	1.2			

は低く、廃水中の阻害物の影響を調査する重要性を確認した。

- 3)シリンジテストにより阻害物の影響濃度および阻害形態まで調査できることを実証した。今後、実廃水中の阻害物を特定化する分析技術の向上が緊急に行う重要課題と考えられる。
- 4)シリンジテストにより実装置の容積負荷を推定した結果、シリンジテストで推定した値は実装置負荷の約半分となった。これは汚泥の馴養度の違いが原因と考えられ、今後さらに検討を行う予定である。

〔参考文献〕

- 1) Jan Dolfing: Journal Microbiological Methods 4 (1985) 1-12
- 2) 古賀洋介:発酵工学 第65巻 第5号 419-430 1987
- 3) 松井三郎:環境工学のための化学 森北出版 1982
- 4) 浦野鉱平: 第25回水質汚濁学会講演集 366-367
- 5) セラニーズ:技術資料 1982
- 6) Jan Dolfing: Applied and Environmental Microbiology May 1985 1142-1145
- 7)野池達也:水質汚濁研究 Vol. 10 No. 11 (1987)
- 8)花木啓祐:微生物による環境制御・管理技術マニュアル 環 境技術研究所 288-292

浄水場における回収水の浮上分離

A Recycle Water Floatation Method in Water Treatment Facility

The wash water of sand filter treatment facilities has been returned to the purification processes together with other discharged water after detention in discharge ponds with little or no further treatment. The recycled water, however, contains high turbidity and color substances, microorganisms such as algae, and iron, manganese, etc. To eliminate the disadvantages, a floatation method was added to a plant (capacity: 600 m³/hr) of the Hanshin Water Supply Authority. The plant, which applied the method first in Japan, has been successfully operating, showing the high removal ratio of those impurities. It also proves the efficiency in reduction of organic carbons, trihalomethanes and TOX formation,

まえがき

現在、多くの浄水場では砂沪過池洗浄排水や排水処理脱 離水など、場内で発生する排水は水質汚濁防止法による規 制と有効利用する観点から、一旦排水池にためられ、無処 理もしくはそれに近い状態で浄水処理工程に回収水として 返送されている。しかし、これらの回収水中には高濃度の 濁・色度成分,藻類などの微小生物,鉄・マンガン等の物 質が含まれており、これらをそのまま原水の一部として再 利用するのは好ましい状態とは言いがたく、何らかの処理 操作を加え, 回収水の水質改善を図るシステムの検討がな されていた。

当社は、この対応策としてわが国でも初めてと言える回 収水の浮上分離設備(600 m³/h 処理)を阪神水道企業団 猪名川事業所内に'90年3月納入,以後順調に稼動している ので設備の概要および処理状況について報告する。

設備納入までの経緯 1.

阪神水道企業団猪名川浄水場(浄水能力日量655 000 m³) では1日におよそ10000m³の各種排水が発生するが、当 浄水場では全国でも早くから回収を目的として、これらの 排水を一旦排水池(2000 m3/池×2池) に受け入れ濃度 調整のため撹拌機により混合撹拌しながら着水井に返送し ている。(第1図)

なかでも砂沪過池の洗浄排水は、量的に回収水全体の約 9割を占め多量の微小生物や鉄・マンガンを含んでいる。 このうち 微小生物は 浄水処理工程に 返送される ことによ

り、再度塩素処理をうけ、その生体がバラバラになり、砂 沪過池を通過し浄水へ漏出する危険性がある。また、水源 である淀川水系琵琶湖の富栄養化の進行に伴って原水中の 生物総数は年々増加の傾向がある。(第2図)鉄・マンガ ンについても、今後、高度浄水処理の導入によって塩素処 理が後段に移行し, 砂沪過池での除去負荷が大きくなり浄 水の色度上昇の懸念がある。これらのことより回収水の水 質改善の必要性がクローズアップされてきた。

阪神水道企業団では、回収水のほとんどは砂沪過池の洗 浄排水であり、沈澱池で沈澱除去できなかった微小生物な ど、比較的比重の軽い物質を多く含む水質であることに着 目し、これらを処理するには沈澱より浮上させる方が効果 的と考え、'84年に浮上テスターによる バッチ実験、さら に '86年2月より当社 パイロットプラントによる 加圧浮上 分離の実験を行った。その結果, 浮上分離は, 濁・色度, 微小生物や鉄・マンガンなどの除去性に優れているととも に,有機炭素やトリハロメタン生成能, TOX生成能の削 減にも効果があることが判明した。このような実験データ をもとに,回収水の水質改善を図るべく,第3図のフロー 図に示すように返送ラインに浮上分離設備の設置が計画さ れ, '89年9月から'90年3月末の工期で建設発注, 当社が その建設を担当した。

- PAC: Powdered Activated Carbon
- 第1図 現行浄水システムのフロー

Fig. 1 Flow diagram of the present water treatment system

第2図 猪名川浄水場原水中の生物数経年変化 Fig. 2 Time course of algae in raw water of Inagawa purification plant

神鋼パンテツク技報

32

Retention tan

第3図

新しい浄水システムのフロー Fig. 3

Flow diagram of the new water treatment system

第4図

循環加圧式浮上分離システムの概 略フロー

Fig. 4 Schematic drawing of circulation type dissolved air floatation system

2.1 浮上分離法の種類

- 浮上分離法には大別して次のような種類がある。
 - ・自然浮上法
 - ・強制浮上法――気泡接触法(浮遊選鉱が代表例) 一気泡析出法――真空式浮上分離

Influent ·

115

Circulation pump

Circulation wat

Air

一加圧浮上分離 一電解浮上分離

なかでも,排水処理には気泡析出・加圧浮上分離法が最 も多く採用されている。

2.2 加圧浮上分離法

水中に懸濁している粒子の水との密度差の少ないもの, または粒径が小さなものは,沈澱も浮上も困難である。し かし,これらの粒子に微細な気泡を付着させて見掛密度を 小さくして浮力を与えれば,容易に浮力分離することがで きる。

加圧浮上分離法は、原水または処理水の一部を十分な空気の存在下で、空気がほとんど飽和状態になるまで加圧(2~5 kgf/cm²G)し、浮上分離槽中で大気圧に開放すれば多量の微細気泡が発生する。この微細気泡の付着によって懸濁粒子や油分などが浮上分離される。

加圧浮上分離法には全量加圧法,部分加圧法,循環加圧 法があるが,フロック破壊の少ない循環加圧法が最も多く 採用されておりこの度のパイロット実験も本法にて行っ た。第4図に循環加圧法の概略フローを示す。

2.3 沈澱法との比較

加圧浮上分離法と沈澱法との一般比較を次に示す。

項目	加圧浮上法	沈澱法
処理水水質	やや劣る	良
槽 容 量	小	大
滞留時間	短い (10~30 min)	長い (2~4 hr)
分離速度	速い(5~15m/h)	遅い (3m/h以下)
排泥濃度	濃い	やや薄い
設置面積	小	大

GAC: Granular Activated Carbon

Recovered

solids

 $(\rightarrow \rightarrow$

Effluent

Floatation separator

写真 1 パイロットプラント Photo. 1 Pilot plant

2.4 加圧浮上分離法の適用例

浄水処理プロセスにおける加圧浮上分離の適用例は少な

- いが、古くから次のような分野で用いられてきた。
- (1) 屎尿処理場の余剰汚泥分離
- (2) 下水処理場の余剰汚泥濃縮
- (3) 製紙工場の白水処理と繊維回収
- (4) 石油精製,油脂,食品工場等の含油廃水処理
- (5) 金属圧延工場,機械加工工場等の冷却水処理
- (6) 染色廃水処理
- (7) 洗炭廃水中の微粉炭処理
- 3. パイロットプラント実験

調査実験のため'86年2月より猪名川浄水場の排水池に パイロットプラントが設置された。(**写真1**)

- 3.1 実験の概要
- 3.1.1 加圧浮上分離装置
- 1) 浮上分離槽
 - 形 式:鋼板製角型
 - 寸 法:760 mm^w×1960 mm^L×1320 mm^H
 - 浮上面積:有効 0.8 m²
- 2)スカム掻寄機
 - 形 式:スクレーパ方式
 - 動 力:0.2 kW

第1表 パイロットプラントによる処理結果(平均値) Table 1 Water quality in pilot plant (Average)

Ite	m	Influent (Waste- water)	Effluent (Recycle water)	Removal	Raw water (Yodo river)
Turbidity	(degree)	26	9	65 %	15
Color	(degree)	81	19	77 %	25
Iron	(mg/ <i>l</i>)	1.30	0.35	72%	0. 59
Manganes	se(mg/ℓ)	0.85	0. 20	77 %	0. 07
TOC	(mg/ℓ)	10.6	5.9	44 %	4. 0
THMFP	(µg/ l)	84	55	35 %	43
TOXFP	$(\mu g/\ell)$	380	280	26 %	200
Algae	$(N/m\boldsymbol{\ell})$	1 600	380	76 %	770

- 3)加圧タンク
 - 形 式:鋼板製円筒竪型

寸 法:500 mm^{\$}×900 mm^{\$H}

容 量:0.18 m³

空気溶解:エゼクター吸引方式

- 4)原水ポンプ
 - 形 式:水中ポンプ
 - 容 量:0.08 m³/min×9.3 m×0.4 kW
- 5)加圧ポンプ
 - 形 式:片吸込渦巻ポンプ
 - 容 <u>量</u>: 0.08 m³/min×50 m×3.7 kW
- 3.1.2 実験方法

原水ポンプにより排水池の回収水を浮上分離装置へ導水 し、実験期間を通じ次の運転条件にて実験を行った。

原水(回収水)流量	4.5 m³/h
加圧水(循環)流量	1.5 m³/h(循環率33 %)
浮上速度	$7.5 \mathrm{m^3/m^2 \cdot h}$
加圧タンク圧力	4.0 kgf/cm ² G
空気量	50 N e /h
薬品注入	無薬注
実験期間	'86年2月 ~' 88年3月

3.3 実験結果¹⁾

第1表に本実験における水質調査結果を示す。これにより濁・色度,鉄,マンガン,微小生物の処理性に優れ,また淀川原水の水質レベル以上に改善できる項目の多いことが分かる。

4. 実設備の概要

パイロットプラントによる実験調査の結果をふまえ,'89 年9月に加圧浮上分離装置の着工を始め、回収水の水質改 善を図るとともに、いままで間欠的に回収していた排水を 連続して返送することで、浄水処理の安定化をめざすこと となった。

4.1 設備仕様

4.	1.	1	設計条件
----	----	---	------

処理方式	処理水循環加圧浮上分離法
処理水量	最大600 m³/h
循環水量	180 m³/h(循環率30 %)
浮上速度	$14.4 \mathrm{m^3/m^2 \cdot h}$
空気溶解	加圧タンク方式(圧力4.0 kgf/cm ² G)

- 4. 1. 2 加圧浮上分離装置
- 1)浮上分離槽 1槽

形 式:鉄筋コンクリート槽

寸 法:7600 mm^w×10200 mm^L×1700 mm^H

- 浮上面積:有効 54 m²
- 2)スカム掻寄機 1基
 形 式:チェンフライト式
 動 力:0.75 kW
- 3)スカム掻取機 1基
 形 式:回転ドラム式
 動 力:1.5 kW
- 4)加圧タンク
 1基

 形
 式:鋼板製円筒竪型
 - 寸 法:1700 mm^{\$}×3 090 mm^{\$H}
 - 容 量:9.0 m³
 - 空気溶解:加圧タンク溶解方式
- 5)原水ポンプ
 2台(内1台予備)
 形 式:着脱式水中汚水ポンプ
 容 量:10 m³/min×8 m×22 kW
- 6)循環加圧ポンプ
 2台(内1台予備)
 形 式:片吸込渦巻ポンプ
 - 容量: $3 m^3/min \times 50 m \times 45 kW$
- 7)処理水移送ポンプ
 2台(内1台予備)
 形 式:片吸込渦巻ポンプ
 容 量:10 m³/min×18 m×45 kW
- 8) スカムピット撹拌機 2台
 形 式:側面型プロペラ式
 動 力:0.75 kW
- 9)スカム移送ポンプ
 2台(内1台予備)
 形 式:1軸ネジポンプ
 容 量:0.06~0.21 m³/min×20 m×2.2 kW
- 10) 沈澱汚泥移送ポンプ 2 台
 形 式:横軸スラリーポンプ
 容 量:0.2 m³/min×20 m×2.2 kW
- 11) 空気圧縮機
 2台(内1台予備)

 形
 式: 圧力スイッチ式オイルフリー型

 容
 量: 235 ℓ/min×8.5 kgf/cm²×2.2 kW
- 12) 計装用空気圧縮機 1 台
 形 式: 圧力スイッチ式オイルフリー型
 容 量: 75 ℓ/min×8.5 kgf/cm²×0.75 kW
- 4.2 設備の特長

処理フローを第5図に、本設備を写真2に示す。 設備の特長としては、浮上分離槽を既設排水池の槽内部 に階層的に設けることにより、省スペース化および既設排 水池を水量調整池として利用し、回収水の定量連続返送を 可能にしたことである。また砂沪過池の洗浄排水には、捕 捉された凝集フロックが存在するため、この残存する凝集 力を活用し、新たな薬品注入を行わないことである。この ためランニングコストは浄水1m³ 当たり0.05 円程度で、 極めて低コストとなる。

5. 運転状況²⁾

'90年2月より約1カ月の試運転をへて4月からユーザ運転を開始した。運転条件は、処理水量 500 m³/h, 浮上速度12 m³/m²·h, 循環率30%, 加圧圧力4 kgf/cm²G である。第2表に'90年12月までの処理状況を示す。各項目とも除去率の変動が大きく、またパイロットプラントによる除去率に比して若干低い。これらの理由として、実設備は

第5図 浮上分離設備処理フロー Fig. 5 Schematic drawing of full scale floatation equipment

第2表 実プラントによる処理結果 Table 2 Water quality in full scale plant

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I	tem	Influent (Wastewater)		Effluent (Recycle water)		Removal %	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Water t	emp. (°C)	10.5~	31.2				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pН		6.8~	9.5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turbidit	y (degree)	18~	49	8.5~	38	11.6 ~ 56.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Color	(degree)	42~	140	30~	80	14 . 3 ∼ 54. 3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SS	(mg/ <i>l</i>)	36~	587	24~	104	18.8~82.3	
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	Iron	(mg/ℓ)	0.53~	1.75	0.27~	1.25	18. 3 ∼ 58. 7	
Aluminum (mg/l) 3.37~25.38 2.36~19.18 7.6~59.4 Algae (N/ml) 1300~98 000 1000~32 200 23.1~72.4	Mangan	ese(mg/l)	0.22~	1.60	0.14~	0.86	$11.4 \sim 91.3$	
Algae (N/ml) 1 300~98 000 1 000~32 200 23. 1~72. 4	Aluminu	ım (mg/ l)	3.37~	25.38	2.36~	19.18	7.6~59.4	
	Algae	$(N/m\ell)$	1 300~9	98 000	1 000~3	32 200	23. 1 ~ 72. 4	

(1990 N=18)

設置スペースによる制約から浮上速度がパイロットプラン ト7.5 m³/m²・h にたいして12 m³/m²・h と 60 % も負荷が 高いこと,および原水水質の変動が挙げられる。原水には 全量のほぼ90 %を占める砂沪過池の洗浄排水の他に,排水 処理設備の脱離水,場内雑排水なども含まれる。特に,排 水処理設備(石灰添加による加圧式汚泥脱水装置)の稼動 時にはそのアルカリ性脱離水の流入によって原水の pH が 上昇し凝集 pH 域より逸脱するため処理が不安定となる。 しかし,現在この脱水装置が無薬注方式に更新中のため将 来,脱離水による影響がなくなれば,現在の除去率の最大 値近辺で安定するものと思われる。

また,浮上分離されたスカムは,天日乾燥床および濃縮 槽に移送されている。移送量は処理水量の約1%(4 m³/h) 程度, 濃度は0.3~0.8%であるが,スカム撹拌機により 完全に脱泡されているため濃縮槽での再浮上はない。

6. まとめ

以上,浄水場における回収水の浮上分離設備に関する実 験から運転までを紹介してきた。当設備は現在,順調に稼 動しており当社として次の成果を得た。

- (1) 浄水場における洗浄排水を主とした回収水の処理に は浮上分離法が極めて有効な方法であることが実証で きた。
- (2) 将来の高度浄水処理導入による浄水プロセスに対応 したサブシステムとして採用された意義は大きく安全 で良質の水づくりに寄与することが確認された。 (微小生物等の循環濃縮防止策の先行実施)

写真2 実プラント Photo.2 Full scale floatation plant

(3) 階層工法により設置 スペースを ほとんど 必要とせ ず,かつ無薬注で運転できる設備であることが確認さ れた。

むすび

水道水における異臭味などの問題は原水水質に起因する ことが多く,特に琵琶湖を水源とする各水道事業体は,そ の対策に苦慮し一部の事業体では高度浄水処理施設の導入 を余儀なくされている。このような状況のなか,高度浄水 処理プロセスの調査・研究のみならずトータルな浄水プロ セスの改善にも着目した阪神水道企業団による本設備の建 設は注目されている。今後,当社はこの実績を生かしトー タルシステムとして機能する高度浄水処理施設の具現化に 寄与したいと考える。

最後に,本設備の納入,運転に当たり多大なるご指導, ご協力いただいた阪神水道企業団の方々に深く感謝の意を 表します。なお,水質データなどについては,阪神水道企 業団が水道研究発表会において報告済みのものを引用させ ていただいた。

参考文献

- 1) 佐々木隆(阪神水道企業団) ほか:新しい浄水システムに関 する一考察, ーオゾン,活性炭流動層及び浮上分離の導入一, 第40回全国水道研究発表会講演集(1989), p. 150-152
- 2)花元隆司(阪神水道企業団)ほか:浮上分離装置による場内 回収水の水質改善,第42回全国水道研究発表会講演集(1991), p. 253-255

生物接触沪過法による水道原水の前処理

Pretreatment of Municipal Water with Biocontact Filtration (BCF)

西 尾 弘 伸 Hironobu Nishio

Experimental tests applying BCF were conducted to remove odor substance (2-methylisobor neol, MIB) and agricultural chemical (CAT) in the municipal source water. The test results indicated the LV, SV, and the concentration of DOC and MIB in the raw water were main factors for biodegradability of MIB. CAT was not found decomposable.

まえがき

平成元年度,『水道水がくさい』という異臭味被害を受けた人は、日本全国で1750万人もあり、その中でも琵琶湖 ・淀川水系で約1190万人とその大半を占め、続いて利根川 ・荒川水系の約490万人と関西、関東に集中している¹⁾。 特に、淀川水系では1980年度以降、毎年のように異臭味が 発生している。この異臭味の原因は主として、かび臭であ る。このかび臭として、現在確認されているのは、2-メチ ルイソボルネオール、ジェオスミンの2種類である。(第 1図に、これらのかび臭物質の構造式を示す。)

これらのかび臭物質は、湖沼の富栄養化による藍藻類の Phormidium tenue, Oscillatoria tenuis, Anabaena macro spora が原因生物とされており、P. tenue と O. tenuis が 2-メチルイソボルネオールを、A. macrospora はジェオスミンを産生するとされている²⁰。また、これかび臭の閾値は10 ng/ℓ 程度で濃度としては非常に低く (ng/ℓ=10⁻⁹g/ℓ)、また既存の浄水プロセス(凝集沈澱+砂沪過)では除去できず、新たに高度処理プロセスを付加する必要がある。

現状,かび臭が発生した場合(主として夏期),浄水プロ セスの前段で粉末活性炭を投入し対処しているが, 完全な異臭味改善には至っていない。しかし,緩速 沪過法(生物膜処理)では,ある程度の異臭味改善 がなされていることから,生物処理での対応は充分 に可能であると思われる。

上水道における生物処理法としては,浸漬沪床法 (ハニコーム法),回転円板法,生物接触沪過法な

2-methynsoe

第1図 臭気物質構造式

Fig. 1 Structural formula of musty materials

どが上げられる³⁾。当社では,現在まで生物接触沪過法に おける水道原水中のアンモニア性窒素の酸化(硝化)につ いての一連の研究を行ってきており⁴⁾⁵⁾,本法をこのかび 臭除去に適用し,その除去特性について得られた知見を述 べると共に,最近,問題化されつつあるゴルフ場など起因 の農薬(除草剤)についてもその生物分解性について検討 を行ったので,併せてここに報告する。

生物接触沪過法³⁾

生物接触沪過法とは,接触粒状媒体(充填材)に微生物 を付着,これを繁殖させた生物膜に水道原水と接触させる ことにより,原水中のアンモニア性窒素などを生物化学的 に酸化,除去する方法であり,既存の浄水プロセスの前処 埋として位置づけられる。

第2図に生物接触沪過装置の概略図を示す。本法は重力 式下向流定速沪過を標準とし、原水水質(主に、アンモニ ア性窒素濃度)にも関係するが、通常曝気を行いながら沪 過を行う。充填沪材には、セラミック系多孔質充填沪材 (平均径:4~5mm)を使用しているため、充填層全体が 有効に働く。このため、充填層全体を効率良く洗浄する必 要があり、本法では A/W 式レオポルドブロックを使用し

第3図 実験フロー

Fig. 3 Schematic diagram of experimental apparatus

第4図 生物接触沪過によるMIB除去率の経日変化 Fig. 4 Variations of MIB removal by biofilm filtration

た空気洗浄,空気水同時洗浄,水洗浄を標準として行うこととし,水洗浄には原則として原水を使用する。なお,洗 浄の頻度は通常,1週間に1回程度でよく,この洗浄操作 は20 min 程度で終了する。

生物接触沪過法によるかび臭除去について⁶⁾

2.1 実験装置および実験方法

本文では、生物接触沪過のかび臭除去特性を原水水質を も含めた種々の影響を定量的に把握するために、市販フミ ン酸(NaOH で精製したもの)を炭素源とし、これと無機 栄養塩類を純水に溶解した人工原水を使用した。⁷⁾実験に は、フミン酸の注入濃度を変化させ、人工原水の DOC (0.45 µm のメンブランフィルターで沪過後のTOC値) を所定の濃度にした。これに市販ガスクロ標準用の2-メチ ルイソボルネオール(以下, MIB)を残留豊薬試験用メ タノールで溶解したものを所定の濃度になるように調整し た。MIBの分析は、n-ヘキサンで抽出し、キャピラリ ーガスクロマトグラフ質量分析計で定量を行った。⁸⁾

第3回に,実験フローを示す。実験には,内径13mm の塩ビ製カラムを使用し,これに多孔質充填沪材(調和平 均径:4.8mm)を所定量充填した。これらカラムは,す

第5図 生物接触沪過による pH の経日変化 Fig. 5 Variations of pH by biofilm filtration

DOC. of raw water [mg/ℓ] 第6図 原水DOC濃度とMIB除去率との関係 Fig. 6 Relationship between DOC of raw water and MIB removal

べて恒温水槽中に水没させ所定の水温±1°C で管理した。 本実験では,空間速度(SV)は3.3 h⁻¹で固定し,通水速 度(LV)を5,10,15 m/hの3系列で行った。カラムの 洗浄は,1週間に1回原水による水洗浄(逆洗速度:30 m /h)を15 min 行った。なお、本実験では,曝気は行わ ず,原水中の溶存酸素のみで処理を行った。(実験期間中 の原水の溶存酸素は7.5~9.0 mg/ℓ であった。)

実験を開始する前に,生物接触沪過パイロットプラントの逆洗排水を濃縮したもの(SS濃度として,1000 mg/e)を一昼夜カラム内を強制循環させた後,連続通水実験を行った。

2.2 実験結果

第4図に、水温が20°Cの場合のMIB除去率と積算通 水日との関係を示す。この期間中の原水の平均のMIB濃 度は260 ng/ℓである。これより、LVの速い系の方が MIB除去率が高いことがわかる。これは、LVの速い系 (生物膜表面流速の速い系)の方が物質移動がより促進さ れMIB除去率が高くなるものと考えられる。また、生物 接触沪過法において、MIB除去能力が出現する日数は10 日程度であり、安定な処理能力を発揮するのに要する日数 は20日程度であることがわかる。この20日程度を要する馴 養期間の短縮については今後の検討課題である。

第5図に,水温が20°C の場合の pH と積算通水日との 関係を示す。この期間中の原水の平均の pH は,6.4 であ り,各LVの処理水において若干の pH の低下が認められ た。

第6図に,水温が 15°C の場合の MIB除去率と原水 DOC 濃度との関係を示す。これより,原水 DOC 濃度 が増加するのに伴い, MIB除去率が低下することがわか

MIB of raw water $[mg/\ell]$

第7図 原水MIB濃度とMIB除去率との関係 Fig. 7 Relationship between MIB of raw water and MIB removal

第9図 CAT (除草剤) の構造式 Fig. 9 Structural formula of CAT (Weed killer)

る。この結果は、易分解性有機物を使用した芳倉らの結 果⁹⁾と同様な結果であり、本実験のように難分解性のフミン酸を使用しても共存有機物が高濃度で存在する場合には MIBは分解し難いことがわかる。

また,原水DOC濃度が高い場合においても,LVの速 い系がMIB除去率が高いこともわかる。

第7図に,水温が25°C の場合の原水MIB濃度とMI B除去率との関係を示す。この場合の原水DOC濃度は, 2.0 mg/*e* である。これより,原水 MIB 濃度の増加に伴 い,MIB除去率が低下することがわかる。

第8図に,水温が15°Cの場合のSVが3.3 h⁻¹と5.0 h⁻¹ におけるLVとMIB除去率との関係を示す。この場合の 原水DOC濃度は4.4 mg/ℓ,原水MIB濃度は135 ng/ℓで ある。また,SVが 3.3 h⁻¹の場合の空筒滞留時間は約 18 min,SVが5.0 h⁻¹の場合は12 min である。これより, SVの低い系がMIB除去率が高いことがわかる。

以上,生物接触沪過法におけるMIB除去に関して,今 回の実験により,MIB除去に影響を及ぼす因子として, ①沪過速度(LV),②空間速度(SV),③原水DOC濃 度,④原水MIB濃度が確認された。

生物処理による農薬(除草剤)の除去性について

最近,ゴルフ場など起因の農薬の水道原水への混入が問題になってきている。厚生省は,これを受けて平成2年度に『ゴルフ場使用農薬に係る水道水の安全対策』について水道環境部長名で各都道府県知事宛に通知を行った。この通知の中には,21種類の農薬(殺虫剤,殺菌剤,除草剤)の暫定水質目標が含まれている。

この農薬の除去法としては,活性炭吸着が有効であると 考えられるが,伏脇らによると¹⁰⁾,除草剤の生物分解性が 示唆されており,本実験において比較的よく出現するシマ

第8図 LVとMIB除去率との関係 Fig. 8 Relationship between LV and MIB removal

ジン(以下, CAT:**第9図**にその構造式を示す。¹¹⁾)の 生物分解性の検討を行った。

3.1 実験方法

本実験において,CATの生物分解性を確認するために, 生物接触沪過パイロットプラントの逆洗排水を用い恒温振 とう機(20°C)中で振とうさせて行った回分式実験並び に2項のMIB除去実験と同様な生物接触沪過による連続 式通水実験を行った。

実験に用いたCATは、市販ガスクロ標準用CATでは なく(このCATは有機溶剤にしか溶解せず、生物処理実 験には不適当と判断)、実際に散布する園芸用粉末 CAT を純水に溶解し精製したものを先の人工原水に所定の濃度 になるように注入した。CATの分析は、固相抽出により、 MIBの場合と同様にキャピラリーガスクロマトグラフ質 量分析計により定量を行った。

連続式通水実験には,**2項**で述べたものと同じ装置を使 用したが,LV5m/h (SV3.3 h⁻¹)の1系列で行い,この 場合も曝気を行わず,溶存酸素のみで行った。他の条件は **2項**と同一である。

3.2 実験結果(回分式実験結果)

第10図に, 逆洗排水のSS濃度が $500 \text{ mg/}\ell$, CAT濃度 が $15 \mu \text{g/}\ell$ の場合のCAT濃度と振とう日数との関係を示 す。これより, CATは, 振とう日3, 7日においてもC AT濃度の低下は認められなかった。また, DOC, pH, UV250, DO 共に農薬を添加しないブランクとの差はほと んど認められなかった。

次に生物接触沪過パイロットプラントの逆洗排水を適宜 沈降濃縮し、SS濃度を変化させたものにCAT濃度が12 μ g/ ℓ となるように注入した結果を**第11**図に示す。これよ り、SS濃度を最大36000 mg/ ℓ まで濃縮を行って実験を 行ったが、CATの分解は確認されなかった。

3.3 実験結果(連続式通水実験結果)

第12図に,水温が15°Cの場合のCAT濃度,DOC,pH, UV250 と積算通水日との関係を示す。これより,積算通 水日24日まで原水のCAT濃度を 26 µg/ℓ で通水していた が,CATは除去されないことがわかる。次に,通水日25 日から,原水のCAT濃度を 13 µg/ℓ としたが,CATは 除去されなかった。

以上の回分式,連続式実験結果からCATの生物分解性 は確認されなかった。

む す び

以上,生物接触沪過における臭気(MIB)除去並びに 農薬(CAT)の生物分解性について述べた。MIB除去 に関しては,その除去の高効率性および除去に影響を及ぼ す因子を確認したが,残された課題も多く更に研究開発を 進めて行く必要がある。

参考文献

- 1)水道産業新聞, '91年7月18日付
- 2) 八木正一: "水中の臭気物質", p. 16, vol. 8, No. 11, 水質 汚濁研究, (1985)
- 3)厚生省生活衛生局水道環境部水道整備課監修: "高度净水施 設技術資料(生物処理施設)", p. 8, (1989),日本水道協会

- 4) 西尾弘伸ら: "生物接触沪過による硝化について", 環境技術, p. 35, vol. 17, No. 9, (1988)
- 5) 西尾弘伸ら: "生物接触沪過における硝化特性", 第40回全 国水道研究発表会講演集, p. 207, (1989)
- 6)西尾弘伸ら: "生物接触沪過による水道原水の前処理", 第 42回全国水道研究発表会講演集, p. 118, (1991)
- 7) E. Namkung: "Removal of Taste-and Odor-Causing Comp ounds by Biofilms Grown on Humic Substances", Jour. AWWA, p. 107, vol. 79, No. 7, (1987)
- 8)中町真美ら: "溶媒抽出法による臭気物質の分析", 第42回 全国水道研究発表会講演集, p. 566, (1991)
- 9) 芳倉太郎: "2MIB分解菌の高度上水処理過程からの分離 と2MIB分解特性",用水と廃水, p. 463, vol. 33, No. 6, (1991)
- 10) 伏脇裕一ら: "除草剤 CNP の微生物分解性の評価 (第 3 報)", 第20回水質汚濁学会講演集, p. 189, (1985)
- 11) 浜島健二郎: "実用農薬ガイドブック", p. 112, 化学工業 社, (1989)

FRP 製冷却塔の開発

Development of FRP Cooling Towers

Shinko Pantec Co., Ltd. has supplied so far, since 1962, approximately 4000 units of various kinds of cooling towers mainly made of wood. In the meantime, we have used resin materials such as fiberglass-reinforced polyester resin, vinyl chloride, polypropylene, fiberglass-reinforced vinyl chloride as materials of construction for cooling tower components so that the cooling towers can be made lightweight and require less maintenance.

However, the importance of preserving forest resources and problems with disposal of industrial wastes have recently been highlighted. This has prompted us to take up as a major theme the application of new raw materials which not only have an excellent durability as alternatives to natural materials for the cooling tower components, but a continued stable supply of which is assured as well.

This paper attempts to demonstrate our development of the cooling tower mainly made of fiberglass-reinforced polyester resin (FRP) which has high mechanical strength and excellent durability, and also give an outline of the FRP cooling tower Unit No. 1 which we have recently manufactured.

まえがき

弊社は1962年(昭和37年)以来,木製冷却塔を主体とし て延べ4000基にわたる各種冷却塔を納入してきた。この 間,冷却塔の軽量化,省メンテナンスを目的としガラス繊 維強化プラスチックス,塩化ビニル,ポリプロピレン,ガ ラス繊維強化塩化ビニルなどの樹脂材料を冷却塔部材とし て採用している。

しかし,近年,森林資源の保護問題,産業廃棄物処理問 題が大きくクローズアップされており,弊社においても天 然材に代わって将来も安定的な供給が得られ,かつ耐久性 と優れた新素材の冷却塔構造材への適用が大きなテーマと して取りあげられてきた。

ここに高強度で,かつ耐久性の優れたガラス繊維強化プ ラスチックス(FRP)を主構造材としたFRP製冷却塔 の製品開発結果を報告すると共に,FRP製冷却塔第1号 幾の概要も併せて紹介する。

1. 新素材としてのFRP製冷却塔

冷却塔とは温水と空気の 接触を 図り熱交換を 行う充填 層,充填層に多量の外気を供給する送風装置,温水を充填 層に均一に分散させる散水装置,水滴飛散を防止するドリ フトエリミネータなどが主な構成要素であり,これらを機 能的にサポートしているのが主構造材である。

新開発のFRP製冷却塔は,この主構造材に新素材とし てFRP材を適用するものである。この主構造材はその機 能上,構造材としての充分な強度と耐久性を要求される が,耐用年数経過後には,部分的な補修が必要になり,メ ンテナンス費用のかかる部位となっていた。

従って,主構造材をFRP化することは耐久性を向上さ は、メンテナンス費を軽減させることになる。

冷却塔主構造材の新素材としてはFRP製引抜材を選定

した。この引抜材の強度は鋼材に匹敵し、単位体積あたり の重量はアルミニウムより軽量である。更に品質が均一で あり、耐久性も優れていることなどがこの材料の特長とし て掲げられる。

FRPは従来より冷却塔部品として20年間以上の使用実 績があるが,その全てがハンドレイアップ製法によるもの であり,主に軽量化,耐久性の向上を主目的に使用されて きた。

今回主構造材に適用するFRP引抜材は軽量化,耐久性 の向上と共に構造材に必要な充分な強度を備えた新素材と いうことができる。

主構造材をFRP化することにより、冷却塔部材である 充填材,エリミネータの樹脂化および送風装置であるプロ ペラ、ファンスタックのFRP化が既に実施ずみであるこ とから、冷却塔構成部材のほとんどの樹脂化が進むことに なる。

FRP引抜材

FRP引抜材は連続引抜法(プルトルージョン法)によ り成形され,角パイプ,丸パイプ,チャンネル材,アング ル材などの製作が可能である。この成形方法は実用化され て20年以上にもなるが,近年技術の向上が目ざましく,複 雑な形状のものや大型のものなどを生産性よく成形できる ようになり,注目を浴びるようになっている。

次に成形方法、特長、物性について紹介する。

2.1 成形方法

連続引抜法は従来のハンドレイアップ法に見られる

離型剤塗布 一 ゲルコート塗布 一 積層(含浸・脱泡) 一	硬化
→トリミング → 離型 → 後硬化 の7工程を連続して処	理し
てゆくものである。その工程を第1図に示す。	

第1表 FRP引抜材と各種材料との強度比較

Fable 1	Comparison material	of	strength	between	FRP	drawn	product	and	various

Item		Unit	FRP Drawn product	FRP Hand lay up	Wood (Douglas fir)	Structural steel	Aluminum	Hard PVC
Specific gra	wity		1.7~1.9	1.4~1.8	0.54	7.8	2.7	1.4
Tensile	L.W.		35~55	6~14	2.85	34~50	7~28	3.9~6.3
strength	C.W.	Kg1/ma-	3~7		-			
Tensile	L.W.	1. mf / 2	2 200~3 000	560~1270	1 000	21.000	7.000	250~420
elasticity	C.W.	Kg1/mm²	500~700		_	21 000	7000	2001-420
Bending	L.W.	haf/m2	25~50	14~28	2.85	34~45	7~28	5.6~10.5
strength	C.W.	Kg1/ mm-	7~18					
Bending	L.W.	terf/m2	1 000~2 000	800~1 300	1 200	21.000	7 000	250~120
elasticity	C.W.	Kg1/am-	700~900		-	21 000	1 000	200~420
Compressive	L.W.	karf/mm2	30~50	11 - 19	2.25	45	_	62.77
strength	C.W.	Kgi/ mm-	10~15	11~10		4J		0.5~1.1
Shearing	L.W.	1. orf / 2	14~18		0.24	28	70	
strength	C.W.	Kg1/mm-	5~7			- 50	15	
Glass cont	ent	%	45~60	24~40	-	-	-	_
Coefficient of water absor	of ption	%	0.2 max	0.1~0.6	30 max.		_	_

第1図 引抜き成形法

Fig. 1 Forming by drawing

連続引抜法の基本的な考え方は,ガラスロービングを主体とし補強材としてマットなどを併用したガラス繊維基材を樹脂槽に通して,過剰の樹脂をスクイズ,脱泡した後に 金型の中へ導入する。金型の中で加熱され,完全硬化した 成形品を引抜き装置で引抜き,その後所定の長さに切断され製品となる。

2.2 FRP引抜材の特長

- 角パイプ、チャンネル、アングル、丸棒などの種々の 断面材を容易に製作できる。
- ガラス繊維基材の構成を変えることで種々の物性を持った製品が得られる。
- 3)物性が均一で、強度が高くかつ長尺材が得られる。
- などが掲げられる。

2.3 物性

- 1) FRP引抜材と各種材料との強度比較を第1表に示 す。引抜材の引張強度、曲げ強度、圧縮強度はほぼ構造 用鋼に匹敵し、比重量はアルミニウムより軽い。FRP 引抜材は軽くて強いというFRPの特性を充分に発揮し ている。
- 2) FRP引抜材の耐候性について促進ばく露試験結果を 第2図に示す。サンシャインカーボンアーク型ウェザー メーターによる2000時間(屋外ばく露4年間に相当)の 試験結果では曲げ強さで2%,曲げ弾性率では4%の強 度劣化が見られる。また、14年間の屋外ばく露確認試験 では、曲げ強さと曲げ弾性率はそれぞれ強度低下は見ら れず、引張強さにおいて5%の強度劣化にとどまってい

Exposure time 第2図 促進ばく露試験結果

る。これらの強度劣化については限界強度の設定時に配 慮されなければならない。

 引抜材の熱間における曲げ強さ,弾性率の保持率を第 3図に示す。

低温物性と高温物性を比較すると,低温下においては 強度は低下せず,むしろ良好な結果が見られる。一方, 高温側では曲げ強度の大きな低下が見られる。入口温度 の高い場合の冷却塔設計においては充分な配慮が必要と なる。

3. 冷却塔主構造材の割り振り

主構造材をFRP化するにあたり,塔体の1スパン長さ や1段高さの寸法の決定によって最適モジュールの検討を 行った。その例として塔体長さ10m,高さ6m,幅方向6 mの主構造を高さ方向に3ケース,幅方向に4ケースの 合計12ケースについて,材料費,工事費,仮設費の総額比 較を行った。

材料費は使用部材の合計額とし,組立費および仮設費は 使用部材重量,部材接点数,総仮設材数量などから実績値 をもとにして費用を算出した。

これらの結果,最も経済的な主構造材の割り振り寸法が 得られ,最適なスパン,1段当りの高さを決定することが できた。今後のシリーズ化においては,これらの割り振り 寸法を基にし,部材加工,組立性をも考慮したモジュール 化を行ってゆく。

4. 部材強度確認

冷却塔構造材の長期荷重,短期荷重(風圧,地震力)に

Bearing strength $Q_B = \frac{W}{dt}$

第5図 支え強さの測定 Fig. 5 Measurement of bearing strength

第 2 表 オイラー座屈値 Table 2 Euler's buckling value

よる部材荷重を検討する上で長柱材の座屈耐力,部材末端 部の支え強度の2点が重要なポイントとなる。主構造材を FRP化するにあたって,これら2項目の確認試験の結果 について報告を行う。

4.1 座屈耐力について

冷却塔主構造は、その構造上最上部に送風装置,温水槽, 各段に充填層が配置されていることより長期荷重による長 柱座屈の問題がある。また、斜柱材の配置によっては更に 風圧力などの短期荷重による座屈力が加わわる。この座屈 耐力は構造検討を行り上で最も重要なポイントの一つであ る。

これらの理由により冷却塔主構造材をFRP化するにあたってはFRP長柱材の座屈限界値を把握しておく必要がある。

座屈限界値についてはオイラー座屈値(**第2表**)との比 較を行う。**第4図**はオイラー座屈値と実座屈限界値とを示 したものである。**写真1**は座屈試験風景である。

座屈試験の結果, FRP長柱材の座屈限界値はオイラー 座屈値とおおむね一致しており,座屈限界値としてはオイ ラー座屈値を採用することができる。

4.2 支え強度について

ボルト接合およびリペット接合などの機械的接合におい て重要な要素となる最大ささえ強さ(第5図参照)はピン を差し込む穴の直径の4倍程度の距離を端部からとってお けば,最大ささえ強さはほぼ安定した数値を得ることがで きる。

FRP引抜材ではガラスロービングの配列方向の場合で 25~30 kgf/mm²の最大ささえ強さが得られる。

第6図はボルト接合における支え面積(d×t)と支え 強さを示したものである。写真2は支え強さ試験風景であ る。試験結果より支え強さは支え面積に比例していること が分る。

以上より部材の支え強さを考える場合,その荷重条件に より支え面積(ボルト本数に比例)を増減することにより 強度を保持することができるものである。

また,リベット接合においても同じ傾向のデータが得ら れている。

写真2 支え強度試験 Photo.2 Bearing strength test

第8図 固有振動波形と周波数分析 Fig. 8 Wave form of natural vibration and frequency analysis

第9図 アンバランス応答 Fig. 9 Magnification of unbalance response

5. 冷却塔の振動について

冷却塔の振動については,まず主構造体の固有振動数が 外力振動数に近い場合は共振現象を起こし起動に支障があ る場合があること。次に運転中の過大振動によって連続運 転に障害となる場合があることの2点が掲げられる。

以上より、冷却塔の振動問題においては主構造体の固有 振動数および運転時の振動値を確認する必要がある。

5.1 固有振動

第7図に示す主構造ラインの理論解析による1次固有振動数は9.04 Hz である。この時の振動モードを破線にて示す。

また実機測定による固有振数は 11 Hz である。この時の 振動波形および周波数分析結果を**第8 図**に示す。

計算値と測定値での固有振動値に差が生じているが,これは荷重条件設定の差と,計算上の接点構造をピン構造としているのに対し,実機では必ずしもそれに相当する接点構造になっていないことなどが原因と考えられる。

しかし,これらの固有振動数は加振周波数となる伝動軸 回転数,ファン通過周波数などに比べ充分小さな値である ことから,主構造材と回転機械との共振現象は発生しない と考えられる。

5.2 運転振動について

冷却塔送風装置の運転振動、揺れの原因については伝動

軸,プロペラの残留アンバランスによる所が大きい。運転 振動を考える場合には,加振力による静たわみ量と,加振 周波数とそれを支える系の固有振動数との差による応答倍 率とを考慮する必要がある。

第9図に振動数比によるアンバランス応答曲線を示す。 この曲線は $\lambda=1$,すなわち系の固有振動数と外力による加 振周波数が一致する点の近傍では共振のために振動倍率が 非常に増大することをあらわし、逆に $\lambda>1$ の場合では振 動値は系の固有振動数の影響を受けにくくなることをあら わしている。

ここで第7図に示す主構造における伝動軸による運転振動値を考える。加振力としては JIS B 0905「回転機のつ り合い良さ」に示される等級 6.3 相当の回転体残留アンパ ランス量とし、この加振力によるたわみ量をアンバランス 応答曲線を用いて補正した。

これらより, 伝動軸による運転振動値は28 μm であり, 小さな振動値ということができる。

以上のことにより主構造材をFRP化した場合の振動に ついても従来塔との間に大きな差は無いと考えられる。

FRP製冷却塔実績紹介

当社はFRP製冷却塔の第一号機として株式会社神戸製 鋼所加古川製鉄所殿より1450m³/h 冷却塔を受注し,本 年6月に据付工事を完了した。この冷却塔仕様および構造

写真3 冷却塔全景 Photo.3 Panoramic view of cooling tower

材の材質を紹介する。また**写真3**にて全景,**写真4**にて塔 内主構造材を紹介する。

(1)	塔	型	式	強制通風式クロスフロー冷却塔
(2)	塔	番	号	2XPA-4F4a2-37G37
(3)	基		数	1基(2セル/1基)
(4)	塔	諸	元	
	•	全	長	9 920 mm
	•	全	幅	9 428 mm
	•	全	高	6533mm(塔柱ベースより)
(5)	機器	8 明	細	
(D送	風	機	
	• 型	Į	式	軸流型(可変ピッチ翼)
	・直	径·	翼数	3 660 mmø
(D送風	機用	電動機	
	• 型	Į	式	屋外型全閉外扇三相誘導電動機
	・定		格	37 kW, 4/6 pole
(D減	速	機	
	• 型	Į	式	スパイラルベベルギア
(6)	構造	材材	皙	
(D主	構	造	FRP
(2	创外	装	板	FRP波板
()v -	- バ	-	FRP波板
Q	Dファ	ンフ	、タック	FRP

写真4 FRP主構造 Photo.4 Main structure of FRP

⑤塔上手摺	FRP
⑥充填材	硬質塩化ビニル
⑦エリミネータ	硬質塩化ビニル
⑧ファン甲板	木(防腐処理)
⑨温水槽 / 蓋	木(防腐処理)
⑩階段/手摺	木(防腐処理)
⑪塔内歩廊/手摺	木(防腐処理)
⑫金具/ボルト・ナ	ット

溶融亜鉛鍍金鋼(SS41) ステンレス鋼(SUS304)

むすび

(13) 征

FRP製冷却塔の開発はその主構造材に新素材としての FRP引抜材を適用し,耐久性の向上を主な目的としている。

冷却塔は鉄鋼,石油,化学,パルプ,食品などあらゆる 業界で使用されており,メンテナンスに関するユーザの関 心も高く,また,稼動後20年近くになる冷却塔も多くあ り,更新を計画されている所も少なくない。

これらによりFRP製冷却塔の需要も今後高まってゆく ものと期待している。各位が冷却塔を選定される際に,本 稿が参考になれば幸いである。

FRP 冷却塔の開発を進めるにあたり, FRP 引抜材に ついて多大のご教示を頂いた大日本硝子工業株式会社殿の 関係者の皆様に深く感謝の意を表します。

〔参考文献〕

FRP設計便覧 社団法人強化プラスチック協会

FRP構造強度設計の実際 社団法人強化プラスチック協会

卓越した精密焼成技術― 混合力増す新型撹拌翼も

Precise enamelling technology applied for a new type agitator having higher mixing performance

神鋼パンテツクのグラスライング(GL) 製機器・装置 は,高度化する化学,製造,食品分野といった製造プロセ スで高い評価を得ている。高耐食性グレードのほか耐摩耗 性,耐アルカリ性など用途に応じた多彩なライニンググラ スをラインアップする一方,高機能GL製機器・装置の開 発にも取り組んでいる。

同社は、様々な角度から次世代型GL製機器・装置の開発を進めている。その一つが最適な製造プロセス条件に対応するライニンググラスの研究開発。物性のバランスに優れ広範囲に適応する標準グラス「高耐食性グラス9000」を 筆頭に多種多様の特徴をもつガラス素材を揃えている。

とくに「耐摩耗性結晶化グラス8500」は、同社の長年培 ったライニンググラス技術と焼成技術の粋を集めて開発さ れた画期的なライニンググラス。卓越した精密焼成技術を 駆使,無数の微細な針状ガラス結晶が均一に分散したライ ニング層を実現、同社の標準グラスに比べ、耐摩耗性で3 倍、耐衝撃性で7倍と大幅に向上したほか、熱伝導率も20 %アップした。摩耗性のあるスラリーを含んだ内容物向け 撹拌槽、晶析槽や付着性の強い樹脂用反応槽などに適して いる。

このほか衝撃性を高めた「耐衝撃性グラス8100」, 耐ア ルカリ特性を確保するとともに耐酸性,耐水性の向上を図 り,より複雑な形状でもライニングが可能な「耐アルカリ グラス NEW 4300」, 低温域での優れた特性を発揮する 「極低温用グラス 3800」,内容物がつきにくい「耐付着性 グラス Ag 処理」などバラエティに富む。

一方,化学工業用各種機器・装置の開発力,技術力を生かし,GL機器・装置の高機能化にも注力している。新型 撹拌翼「フルゾーン」を採用した撹拌槽はその代表選手。 独自に開発したワイドパドル翼を上下(上段はフィン付 翼,下段は後退翼)に設置,低速でも槽内部全体に効率よ く対流を起こす。使用粘性領域も1-10万センチボイズと 広く,新タイプの撹拌槽といえる。

このため、これまで難しいとされていた固形物を含む液体や局所せん断による過剰分解、結晶分解、乳化分解を起こす内容物の混合に威力を発揮する。消費電力は従来翼に比べ半分以下。 GL製のほか ステンレス 鋼製も戦列 に加え、今後の需要拡大が期待されている。

フルゾーン Fullzone また同社は来年,「技術研究所」(神戸市西区)の完成, 播磨工場(兵庫県加古郡播磨町)へのGL機器を含む化工 機の生産体制の集約化を完了,研究開発,生産の両面から 事業基盤強化策を推進しており^{*}エクセレントカンパニ ー、への飛躍に一段と弾みがつきそうだ。

('91.8.9 化学工業日報)

貴金属精製用のPVDF製遠心抽出機一 仏ロバテルが商品化

Robatel provides RVDF centrifugal extractor for noble metal refinary

遠心抽出機の専門メーカーである仏ロバテル(本社・ジェナス)はこのほど、貴金属精製用として液一液抽出法によるポリフッ化ビニリデン(PVDF)製遠心抽出機を商品化した。

同社が開発したBXP型ロバテル遠心抽出機(商品名) は、貴金属を抽出する際の強酸性水溶液中に含まれる不純物,他の金属溶液を分離・精製するのに有効な液一液抽出 法を採用したのに加え、モジュール機能があるため、貴金 属を純粋に分離・抽出できるのが特徴。

また,始動・停止時間が約10秒と非常に短いため,始動 ・停止時の製品損失を最小限に抑えられる。その他にも, PVDF製であることから耐腐食性が飛躍的に向上してい る。 - ('91.8.26 化学工業日報)

FRP冷却塔に進出―90%プラ化で軽量に

Production of FRP cooling tower starts light weight tower by replacing 90% components into plastic material

神鋼パンテツクは27日, FRP製の産業用冷却塔を発売 すると発表した。すでに神戸製鋼所加古川製鉄所(兵庫県 加古川市)に,1時間当たりの冷却水量が1450 m³の中型 冷却塔を納入しており,初年度1億円の販売を見込んでい る。FRP製冷却塔分野に参入するのは,石川島播磨重工 業に次いで神鋼パンテツクが2社目という。

神鋼に納入した冷却塔は,柱や斜柱,梁(はり)などの 骨組みにFRP引き抜き成形材を使用し,充てん材受けな ど構成材もFRP化したもの。全体の90%近くをプラスチ ック化したため軽量。

また工場出荷段階からユニット化できるため,工期が短 くて済むなどの特徴もある。納入価格は2500万円。

神鋼パンテツクでは62年から,産業用冷却塔の販売を始めたトップメーカー。従来は木製,鋼製,コンクリート製の冷却塔を販売してきたが,1時間当たりの冷却水量が3000 m³までの中・大型FRP製冷却塔8機種もシリーズ 化することで,顧客の軽量化,メンテナンスフリーの需要にも対応するもの。 ('91.8.28 日刊工業新聞)

PVDF 製遠心抽出機 PVDF centrifugal extractor

世界最大級の冷却塔設備 World largest class cooling tower

スーパーフィルトロン Super Filtron

電気浸透式加圧脱水機「スーパーフィルトロン」 2台を受注―上水分野では世界初

2 sets of electro-osmotic dehydrator "Super Filtron" was ordered as the first case in the world for the field of municipal supply water

甲山事業所は3ヵ所ある阪神水道企業団の浄水場の一 つ。淀川原水を1日16万m³処理し,自然流下で尼崎,西 宮, 芦屋,神戸市へ送水している。排水処理設備は昭和46 年に稼動した石灰薬注方式の加圧脱水機3台と天日乾燥床 があるが,今回20年余り経過した脱水機のリプレイスとし て電気浸透式加圧脱水機を選定した。工事は新しい建屋を 建設,来年度に機械の据付を行い,平成5年2月に完成。 既存の設備を引き続き撤去していく計画。

電気浸透式脱水法は圧力や遠心力を利用した機械的な脱 水ではなく,電気エネルギーで液移動を起こし水分を除去 する方式である。一般に浄水汚泥中の粒子はマイナス(ゼ ータ電位),粒子と接している水分はプラスに荷電してお り,お互いがつりあっている。これを圧搾などで機械的に 絞り出すためには沢山の石灰薬注や15~20 kg/cm²もの高 王搾力が必要であった。

神鋼パンテツクが開発した電気浸透式加圧脱水機は従来 の加圧脱水機に電極を組み込んだ構造。約4 kg/cm² ほど の圧力で絞った状態で,40ボルト程度の直流電圧をかける と,汚泥粒子はプラスの電極側に移動(電気泳動現象)。 さらにろ過脱水が進んで汚泥粒子の移動が拘束されると, 今度は液体が電気的にマイナス側に移動(電気浸透現象) し,脱水を促進する仕組み。この結果,機械的な圧力では 絞り切れない水分も無薬注で含水率60%以下にまで容易に さげることができる。

電気浸透脱水の原理は1920年代にすでに英国,ドイツで 特許出願がある。1990年には米国オハイオ州・バテル記念 研究所でEADプロセスと称して電気浸透と超音波を組み 合わせた脱水機が開発されており,技術的には確立された ものとなっている。国内でも水道研究発表会,下水道研究 発表会などで発表が出始めており,製品化も一部で進んで いる。同社では10年前から開発に着手。すでに住宅都市整 備公団のコミプラ,東北電力の洗釜排水処理,民間企業の 製造工程向けに納入実績を持っている。上水道排水処理向 けは今回が初めて。世界初の実績でもあるという。

納入が決まった1台当たりのろ過面積は252 m² (1500 mm角×70室)で、長さ12.2 m×幅3.0 m×高4.1 m。 <u>重量</u> は53.7トン。在来の無薬注タイプのフィルタープレスと比 較して低い圧搾圧力 であるため, 装置が 軽量, コンパク ト,消耗品量も少なくなる。処理能力は3倍, 含水率もさ らに10%以上引き下げることができるなどの特徴がある。 電気浸透に使用される電力もわずかで, トータルランニン グコストは実に在来の6割程度としている。

浄水場から排出されていた逆洗排水や,沈殿汚泥は昭和 52年から水濁法の全面適用をうけ,浄水処理能力10 000 m³ 以上の施設約500ヵ所では何らかの処理対策を行っている。 そのうち約半分が機械脱水方式だが,法規制後すでに15年 程を経過しているため老朽化や能力ダウンで機械の更新が 課題になっている。 ('91.9.26 日本水道新聞)

世界最大級の生産能力一多機能の沪過乾燥機

World largest production capacity multifunctional filter dryer

神鋼パンテックは、グラスライニング製では世界最大ク ラスの生産能力をもつ多機能型沪過乾燥機「ハイロフ・ド ライヤー」を開発、大塚化学(社長・大塚雄二郎氏、大阪 市中央区、**2**(06)943-7711) に納入した。納入価格は約 6千万円。

「ハイロフ・ドライヤー」は,反応・晶析, 沪過・乾燥 を1台で行う多機能型装置。一連の作業を密閉容器内で全 自動で処理する。

今回納入した装置は本体, 撹拌翼を高耐食性のグラスラ イニングで製作。 沪過面積が従来製品の約2倍の1.1 m²あ り, クリーンルーム内に設置された医薬品の最終工程で使 われる。

グラスライニングは鋼材にグラスをライニング(内張り) した複合材料。鋼の強靱性とグラスの耐食性を兼ね備えて おり,厳しい品質管理が要求される化学,医薬,食品など の分野で最近需要が高まっている。

('91.9.30 日本工業新聞)

タイに世界最大級の冷却塔を納入

World largest capacity cooling tower being delivered in Thailand

神鋼パンテツクは29日,タイ国北部の石炭火力発電所で あるマエモ発電所に,冷却水量が1時間当たり32760 m³ で世界最大級の冷却塔設備を2基納入したと発表した。今 年6月には建設工事を終えており,来月初めに引き渡す。 同社はこれまで国内外に5000基の冷却塔を納入している トップメーカーで,95年ごろまでには,タイ,インドネシ アなどに販売拠点を設けて受注拡大を狙うという。

納入した冷却塔設備は、冷却塔本体と循環水用ポンプ, 配管。加えて現地据え付け工事の指導も行った。現在は設 備の運転テストを実施しており、運転指導を終えた後に正 式引き渡しとなる。 ('91.10.30 日刊工業新聞)