高粘度液用薄膜蒸発機「エクセバ」の

スケールアップ

Scale-up of the Thin-Film Evaporator EXEVA for High Viscous Products

EXEVA, our newly developed thin-film evaporator, has been equipped with some special mechanisms different from conventional thin-film evaporators, and this is most effective in concentrating polymer solutions of high-viscosity or heat-sensitive materials and in volatilizing. to obtain very low residual monomer contents.

Some EXEVAs which were scaled up from the test equipment EX-2 (heated area 0.2 m^2) have been put into operation in chemical plants.

This paper describes the scale-up method of the flow and evaporation of EXEVA and the results of investigation for scaled-up EXEVA EX-50 (heated area $5m^2$).

The data of power consumption and discharge quantity of EX-50 substantially correspond to calculated values.

まえがき

当社の開発した高粘度液用薄膜蒸発機「エクセバ」は, 従来の機種にない特殊機構を装備しており, 種々の実液実 験で優れた蒸発性能を示していることを既に本誌(1989年 Vol. 33, No. 2 および 1990年 Vol. 34, No. 3)で詳述し ている。

エクセバは、本格的な販売開始以来、主にポリマー分野 で、従来機器での蒸発が困難であるポリマー、例えば蒸発 後超高粘度になるポリマー、熱変質の受け易いポリマー、 製品の品質を左右する残留揮発分が非常に少ないポリマー などでその特長を生かして利用され始めている。

エクセバテスト機(EX-2,伝熱面積0.2m²)の蒸発テ ストでその性能が認められて、実機を受注製作して、現 在、生産現場で順調に稼働している。

テスト機のテストデータに基づいてスケールアップされた実機(EX-50, 伝熱面積5m²)(写真1)のデータを得たので,流動状態と蒸発性能に関するスケールアップの関係式, 撹拌動力, スクリュ排出機の吐出性能について報告する。

1. スケールアップに関する考え方

高粘度液用薄膜蒸発機内の流動,撹拌動力,蒸発などの 各特性について理論的な研究がほとんどなされていないた めスケールアップについても実装置の実績が先行している のが実情である。

近年,村上ら^{1),2)}によって高粘度流体を用いて,1枚翼 の撹拌式薄膜蒸発機内の流動・混合機構を蒸発を伴わない 場合について理論的かつ実験的に解明された。また撹拌所 要動力,混合などの操作特性との関連をスケールアップ法 も含めて明らかにし,スケールアップにおける関係式を導 出している。

エクセバ(第1図)では、ディストリビュータ、多段特 殊傾斜翼によって、高粘度液からの蒸発、平均滞留時間、 撹拌動力などが規制され、その各々が関連して処理製品に

神鋼パンテツク技報

第2図 撹拌式薄膜蒸発機内の液流動模式図 Fig. 2 Schematic diagram of an agitated thin-film evaporator and flow field

第3図 無次元液膜厚さの比較

Fig. 3 Comparisons of the non-dimensional film thickness

影響を与えている。スケールアップによって,それらがどのような関係になるのかを明らかにする前に,エクセバに 求められる性能からのスケールアップを考えてみる。

エクセバの主な機能は、揮発分を多く含んだ原料液を薄 膜化させて、本体壁面からの伝熱により、揮発分を蒸発し て濃縮し高粘度の製品を得ることにある。このことから、 スケールアップ前後において、本体壁面より等しく熱量が 与えられるならば、内容液の薄膜状態を等しくすることに よって同じ蒸発状態にすることができると考えられる。更 に、平均滞留時間を等しくすることによって、同じ熱作用 を受けた製品を得ることができるであろうことは容易に予 測することができる。スケールアップ前後において内容液 の薄膜状態を等しくするには、本体内壁面と撹拌翼先端と のクリアランスを等しくすればよいと考えられる。次に、 平均滞留時間を等しくするには、どのようなスケールアッ プ則が適用できるか考えてみる。

1.1 流動状態に関するスケールアップの関係式

高田³⁾は,垂直1枚翼を用いた撹拌式薄膜蒸発機内の高 粘度域における詳細な流動解析と実測値に基づいてスケー ルアップ則を提案している。

その中で, 撹拌式薄膜蒸発機の翼近傍の流れ(第2図) を解析することによってスケールアップ前後においてクリ アランスおよび単位浸辺長当りの質量流量を等しくした場 合,

1) 液膜厚さはスケールアップの影響を受けない。 無次元液膜厚さ λ (= h_{∞}/h_0)は、液膜 Reynolds 数およ び槽径依存性はみられない。(**第3図**)

第4図 平均滞留時間の比較

$$\frac{\mathbf{h}_{\infty.s}}{\mathbf{h}_{0}} = \frac{\mathbf{h}_{\infty.L}}{\mathbf{h}_{0}} \tag{1}$$

ここに、ho:内壁面で翼先端のクリアランス〔m〕
h∞:液膜厚さ
〔m〕
以後添字Sはスケールアップ前の装置を、Lはスケール
アップ後の装置を表わす。

2)フィレット部平均流下速度は、スケールアップの影響 を受けない。

$$W_{f \cdot s} = W_{f \cdot L} \tag{2}$$

W_f:フィレットの平均流下速度 (m·s⁻¹)
3)フィレット部断面積は,槽径比に比例する

$$\frac{A_{\rm S}}{D_{\rm S}} = \frac{A_{\rm L}}{D_{\rm L}} \tag{3}$$

が成立することを理論解析および実験より導びいている。 本関係式より,スケールアップ前後においてクリアラン スおよび単位浸辺長当りの質量流量を等しくすれば平均滞 留時間を等しくできることを実証している。(第4図) 単位浸辺長当りの質量流量 Γ を等しくすることは

$$\Gamma_{\rm S} = \frac{\mathbf{F}_{\rm o.S}}{\pi \mathbf{D}_{\rm S}} = \Gamma_{\rm L} = \frac{\mathbf{F}_{\rm o.L}}{\pi \mathbf{D}_{\rm L}} \tag{4}$$

であり,

Fo:質量流量

$$\frac{\mathbf{F}_{\mathbf{0}\cdot\mathbf{L}}}{\mathbf{F}_{\mathbf{0}\cdot\mathbf{S}}} = \frac{\mathbf{D}_{\mathbf{L}}}{\mathbf{D}_{\mathbf{S}}}$$
(5)

となる。

これを実際の装置で、処理量10倍のスケールアップを考えると、(5)式よりスケールアップ前後において槽内径を10 倍にしなければならない。このことは、スケールアップに よって槽径のみが大きくなり、槽長さが変わらないことに なり、実用的でないと思われる。

高粘度液用薄膜蒸発機「エクセバ」は、上記の垂直一枚 翼と異なり、ディストリビュータと多段傾斜翼によって構 成されており、機内の平均滞留時間 T_R は次式により与え られる。

[kg•s⁻¹]

第5図 質量流量に対するホールドアップ Fig. 5 Hold up vs. flow rate

$$T_{R} = \frac{H}{F_{O}}$$
(6)

H:ホールドアップ量 〔kg〕 スケールアップの前後で平均滞留時間 T_R を等しくする ためには

$$T_{R\cdot s} = \frac{H_s}{F_{0\cdot s}} = T_{R\cdot L} = \frac{H_L}{F_{0\cdot L}}$$
(7)

が成立しなければならない。

エクセバ内のホールドアップHは次式で示すことができ る。

$$H_{s} = (4A_{s} + \pi D_{s}h_{\infty,s})\rho L_{s}$$
$$H_{L} = (4A_{L} + \pi D_{L}h_{\infty,L})\rho L_{L}$$

L:装置長さ

$$\frac{\mathbf{h}_{e\cdot s} \pi \mathbf{D}_{s} \rho \mathbf{L}_{s}}{\mathbf{F}_{0\cdot s}} = \frac{\mathbf{h}_{e\cdot L} \pi \mathbf{D}_{L} \rho \mathbf{L}_{L}}{\mathbf{F}_{0\cdot L}} \qquad (8)$$

となる。

エクセパは,クリアランスが一定であれば,単位浸辺長 当りの質量流量にかかわらず,ホールドアップ量は,ほぼ 一定である(第5図)ことから,スケールアップ前後にお いて

$$\mathbf{h}_{e\cdot s} = \mathbf{h}_{e\cdot L} \tag{9}$$

が成立すると考えることができる。

(9)式を(8)式に代入すると

$$\frac{F_{O\cdot L}}{F_{O\cdot S}} = \frac{D_L L_L}{D_S L_S}$$
(10)

となる。

エクセバでは、(10)式がスケールアップ前後においてクリ アランス一定で平均滞流時間を等しくするための条件であ る。

これを実際の装置で,処理量10倍のスケールアップを考 えると, (10)式よりスケールアップ前後において槽内径と長 さの積を10倍にすればよいことになる。これなら実装置へ の適用は可能である。

1.2 蒸発性能に関するスケールアップの関係式

通常,熱交換器や蒸発器では,伝熱面積に比例するとし てスケールアップが行われる。 エクセバは、薄膜部で蒸発が行われるので、薄膜部での 蒸発性能が スケールアップ 前後に おいて 等しいのであれ ば, 伝熱面積比例と考えてよいであろう。これは, 単位伝 熱面積当りの質量流量がスケールアップ前後において等し いので次式が成立する。

$$\frac{\mathrm{F}_{\mathrm{O}\text{-}\mathrm{S}}}{\pi\mathrm{D}_{\mathrm{S}}\mathrm{L}_{\mathrm{S}}} = \frac{\mathrm{F}_{\mathrm{O}\text{-}\mathrm{L}}}{\pi\mathrm{D}_{\mathrm{L}}\mathrm{L}_{\mathrm{L}}}$$

これより

$$\frac{F_{0-L}}{F_{0-S}} = \frac{D_L L_L}{D_S L_S}$$
(1)

となり、(10)式と同様の式が導かれる。

以上より,スケールアップ前後の流動状態における関係 式と蒸発性能における関係式が等しいことから,エクセバ のスケールアップの基本則は、「スケールアップ前後にお いてクリアランス一定で,伝熱面積当りの質量流量を等し くする」ことである。

スケールアップ前後におけるエクセバの蒸発能力を保証 するには、伝熱面からの熱伝達が等しく行われ各部での流 動状態が等しくなければならない。特にスケールアップ後 に蒸発性能に影響を及ぼすと考えられるディストリビュー タの一様な液分散、多段傾斜翼による薄膜の形成、薄膜部 とフィレット部の物質交換が十分行われる構造などに注意 を払う必要がある。

2. スケールアップにおける撹拌動力

エクセバの処理物質は、主にポリマーである。ポリマー は、非ニュトン流体で与えられる速度勾配によって粘度が 変化する。また、粘度が温度によって大きく変わる場合も ある。入口(原料)が低粘性で出口(製品)が高粘性の場 合ではエクセバ内で粘度が著しく変化する。以上の理由に より撹拌動力の予測は難しく、テストでの撹拌動力測定が 必要となる。

現在、テスト機での蒸発テスト時、撹拌動力を歪ゲージ で測定してパソコンにてオンライン処理している。その測 定した撹拌動力を基に実機へのスケールアップを行ってい る。蒸発テスト時に撹拌動力を測定しているので、同じ操 作条件とするとスケールアップ前後において処理物質の物 性は等しいと考えられる。スケールアップで撹拌動力に関 係するファクタは、処理量、翼形状、翼スパン、クリアラ ンス, 翼投影幅, 翼段数, 回転数であるが, これらは, 基 本的に1章 で述べた スケールアップ 則に従って 決定され る。クリアランスは、テスト機と実機で等しくし、回転数 は、撹拌翼の先端速度一定でスケールアップされる。これ によって,スケールアップ前後において内容液に作用する 速度勾配が等しくなるので,ポリマー粘度が等しくなり, 躍先端に 作用する力も同等 になると 考えられる。 翼形状 は,幾何学的相似則でスケールアップされるが, 撹拌動力 に影響する翼先端の板厚は、テスト機と等しくする必要が ある。

搅拌動力の無次元相関式³⁾は、次式で与えられる。

$N_P = A(R_{eM})^{\alpha}(R_{eL})^{\beta}(h_0/d)^{\gamma}$

ここで、 動力数 N_P、 撹拌 Reynolds 数 R_{eM}, 液膜 Reynolds 数 R_{eL} の各々の無次元数は次式で定義される。

$$N_{P} = \frac{P}{\rho \cdot n^{3} \cdot d^{3} \cdot h_{0} \cdot L}$$

(12)

MNo.100> 見積用計算プログラム (V1.0))	日付: '91年 08月 16日
攢:件,動,力(計),算計	ENo.00-0-00 客先名	五 神鋼 パンテック(料)
テスト機 >	<実 機 >	
本体内径(s 155 mm	本体内径dL	0 mm
クリアランス δ s 0 mm	クリアランス る L	0 mm
本体長さLs <u>440</u> mm	本体長さしし	Ø mm
回転数 n.s	回転数 nL	0 rpm
供給量 Q s	供給量 QL	0 kg/h
液密度 ρ s 📃 🥑 kg/m3	液密度 ρL	0 kg/m3
供給液粘度 µ f 0 Pa·s	供給波粘度μґ	0 Pa·s
残留液粘度μr 0 Pa·s	残留波粘度µr	0 Pa·s
平均液粘度 µs 0 Pa·s	平均液粘度μs	0 Pa·s
Ps ØKW	PL	******** KW
計 算 結 果 >		
攪拌Reynolds数 Rems = ********	攪 拌 Reynolds数	Rem1 = *******
波 膜 Reynolds数 Rels = ********	液 膜 Reynolds数	Rell = *******
搅拌動力数 Nps = ********	搅拌動力数	Npl = *******
攪拌翼定数 A = ********	攪 拌 動 力	Pl = ******* Kw
Antonio	38 40 1 T + 15	

第6図 撹拌動力計算の画面

Fig. 6 The calculated power comsumption display

 $[kg \cdot m^{-1} \cdot s^{-1}]$

実機の撹拌動力は,テスト機の測定撹拌動力から(12)式の A値を求め,そのA値を用いて計算する。

第6図にパソコン画面上の撹拌動力計算の様式を示す。 テスト機での撹拌動力より、本計算式でスケールアップし た実機(EX-50)の撹拌動力の計算値と実測値を第1表 に示す。

第1表のA樹脂の撹拌所要動力値で,計算値と実測値に 相当な差があるが,モータ動力に比べて出力値が少ないの で,実測値に,測定誤差が含まれていると思われる。

 スケールアップにおけるスクリュ排出機の 吐出能力

エクセバは,製品払出部に1軸押出機の原理を適用した スクリュ排出機を設置している。これは,上部吸込口に高 粘度液が満たされていないが,本体が真空であってもある 一定の吐出圧で排出することができるように工夫されてい る。

テスト機のスクリュ排出機は、高粘度液では約30 rpm 中粘度液では約80 rpm と液粘度によって回転数を約30~ 100 rpm で操作して残留液(製品)の払出しを行ってい る。スクリュ排出機を製品払出し後の液の昇圧に用いるの は、エネルギー効率が悪いので、実機では吐出圧を 0.2~ 0.3 MPa,回転数20~30 rpmで、液粘度、吐出量を考慮し て次式よりスクリュ形状を決定している。

第1表 実測値と計算値の撹拌所要動力比較 Table 1 Comparisons between the measured and calculated power comsumption

				*
	EX-2	EX-50	P kW	Scale up
	P kW	Calculated	Measured	error
A Resin	0. 48 kW	17. 3 kW	12.4 kW	+39 %
B Resin	1. 30 kW	37. 8 kW	29. 7 kW	+27 %

	$\mathbf{Q} = \alpha^* \mathbf{N} - \beta^* \frac{1}{\mu} \left(\frac{\mathbf{P}}{\mathbf{Z}} \right) - \gamma^* \frac{1}{\mu}$	$-\left(\frac{\mathbf{P}}{\mathbf{Z}}\right)$
	$\alpha^* = \frac{\pi \mathrm{DH}(\mathrm{t} - \mathrm{e}) \mathrm{cos}^2 \alpha}{2}$:推進流定数
	$\beta^* = \frac{\mathrm{H}^3(\mathrm{t} - \mathrm{e})\mathrm{cos}\alpha\mathrm{sin}\alpha}{12}$: 圧力流定数
	$\gamma^* = \frac{\pi^2 D^2 \delta^3 \tan \alpha}{10 e}$:漏洩流定数
ここで	Q:吐出量	[m ³ ·s ⁻¹]
	N:回転数	[s ⁻¹]
	μ :粘度	[Pa•s]
	P:吐出圧	[Pa]
	Z:長さ	[m]
	D, H, t, e, ð は 第7図 に示・	す。

実機(EX-50)は、多品種の樹脂を生産しており、その各品種間の粘度差は、約10倍程度であるが、本計算式で設計したスクリュ排出機は、回転数の変速範囲で余裕をもって製品を払出すことができている。

むすび

撹拌式薄膜蒸発機エクセバのスケールアップにおける流 動状態に関する関係式と蒸発性能に関する関係式が同一で あり、その意味するところを示した。さらに、エクセバの スケールアップで、撹拌動力計算式とスクリュの吐出量計 算式を実機へ適用することができることを確認した。

エクセバは,独自の機構を備えているがゆえに数々の特 長を有しており,テスト機で優れた蒸発性能を示してきた が,実機においてもその性能を実証しえたことを報告し た。

本稿が高粘度液の蒸発に携わっておられる方々に,少し でも参考になれば幸いである。

〔参考文献〕

- 1) Komori, S., K. Takata and Y. Murakami : Chem. Eng. Japan, Vol. 21, 639 (1988)
- 2) S. Komori, K. Takada and Y. Murakami : Chem. Eng. Japan, Vol. 22, 346 (1989)

3) 高田:九州大学工学部化学機械工学科,博士論文(1988)