IWS(イオンスクラバー)の 産業廃棄物処理設備への適用紹介

Application of IWS to Industrial Waste Treatment Systems

Shinko Pantec has conducted pilot tests with the IWS, wet type dust collection/gas removal system, which is designed to serve a dual purpose of removing simultaneously both dust and hazardous gases emitted from an industrial waste incinerator. Full-scale units delivered to our users have been found to be lower in both construction and operating costs, as compared with the conventional systems. This paper presents these findings together with the design features of the IWS.

まえがき

最近,企業の生産活動によって排出される産業廃棄物の 量は年々拡大の一途をたどっている。その処理は,埋立, 焼却および溶融等で行われているが,最終処分場が不足す る中,今後焼却処理に重点をおいた動きがますます活発化 していくものと考えられる。このような産業廃棄物焼却炉 から排出される排ガスを処理するプロセスとしては、ベン チュリースクラバーやサイクロン等の集塵機とスクラバー との組合せ,高度処理として電気集塵機(ESP)やバグ フイルター(BF)とスクラバーとの組合せたものがある。 本稿では,一つの機種で集塵と除ガスを同時に行うこと ができる"IWS"を産業廃棄物焼却炉の排ガス処理に適 用したのでその概要とパイロットテストおよび実装置の運

Scrubber zone for envoid of particles and gases

第2図 イオンスクラバー構造図 Fig. 2 Construction of Ion Scrubber

転結果等について述べる。

1. IWSの概要

産業廃棄物焼却炉排ガス処理法として従来プロセスとI WSとの比較フローを第1図に示す。図から従来プロセス は集塵を目的としてESPまたはBFを設置し、その後急 冷塔で断熱飽和温度までガス冷却しスクラバーにより有害 ガスを除去する。一方、IWSプロセスの場合は、排ガス を急冷塔で冷却し、IWSで集塵と有害ガスの除去を同時 に行うものである。即ち、装置1つをそっくり省くことが できる点が最大の特長である。

第2図に装置の概要を示す。ダストは高電圧イオン化部 で荷電され、充填部において慣性衝突およびイメージ作用 力により除去される。また同時に有害ガスも充填部で反応 により除去される。なお、ダストを荷電するイオン化部の 接地プレートはダストまたは析出物の付着成長を防止する 目的で連続して循環水をオーバーフローさせてヌレ壁を形 成させる構造となっている。

IWSの集塵に関する最大の特長は第3図に示す通り処理前後の粒径分布に差がない点にある。つまり,2段にすると1段と同一の除去率が得られ,1段で90%の除去率なら2段にすると99%の除去率が得られる。

パイロットテスト

ガス流速の変化によるダスト除去効率の差を把握し、より的確な実施設計ができるように、パイロットプラントを 準備している。その外観を**写真1**に示す。テスト装置はユ ニットとなっており、使用時にダクト、一次側電気配線お よび一次側給水配管を施工するだけでよい。

Vol. 36 No. 2 (1992/8)

神鋼パンテツク技報

ig. 4 Pilot test flow

书5図 パイロットテストフロ Fig. 5 Pilot test flow

本稿ではこのパイロットプラントを利用して, 廃液+廃 容剤焼却炉および油泥+廃液焼却炉排ガス処理2例につい てテストを実施したので紹介する。

!. 1 廃液+廃溶剤焼却炉排ガス処理例

塩を含む廃液および塩素系廃溶剤をロータリーキルンで 先却処理している。排ガス中には、ダスト、HCl, SOx お よび未燃物質が含まれている。排ガス処理方式として消石 灰吹込み装置付ESPが設置されており、HCl および SOx ま消石灰との反応により塩化カルシウムおよび硫酸カルシ ウムとなって固定され、一方ダストは 電気的に 集塵され る。この方式の問題点は未燃カーボンによる悪臭が除去で きないことならびに処理後のダスト濃度が高いために煙が 目視されることであった。この問題を解決すべくテストを 実施した。

```
2.1.1 テスト方法
```

実施テストの外観を写真2にそのフローを第4図に示

写真1 IWSパイロットプラント Photo.1 IWS pilot plant

写真2 パイロットテスト Photo.2 Pilot test

第6回 ガス流速と集塵効率の関係(Case 1)

Fig. 6 Relation between gas velocity and collection efficiency (Case 1)

す。原ガスは既設ESP前 (case 1) とESP後 (case 2) の2ケースを採用した。なお、パイロットテストプラント のフローは**第5図**の通りであり、テストプラントの概略仕 様は次の通りである。

急冷塔	$450~\mathrm{mm^{\phi}} \times 2~900~\mathrm{mm^{H}}$	SS41製
IWS	$6435mm^{ m L} imes 1500mm^{ m w} imes$	$2792\mathrm{mm^{H}}$
		FRP製
NaOH 貯槽	50 <i>e</i>	ポリエチレン製
ファン	$70 \text{ m}^3/\text{min} \times 250 \text{ mmAq} >$	< 5.5 kW
		FRP製
循環ポンプ	$500 \ \ell/\min \times 15 \ m \times 3.7 \ kW$	V PVDF製
薬注ポンプ	$115 \text{ m}\ell/\min \times 40 \text{ m} \times 0.04$	5 kW
		PVC製
パージヒータ	$z - 3 \mathrm{kW}$	
直流電源装置	$f = 30 \mathrm{kV} \times 100 \mathrm{mA}$	
. 1. 2 テス	ト結果	

原ガスをESP前から導入した場合のテスト結果を第1

2

ĵ,	1	表	Case 1 テスト結果	
al	ble	1	Test result of case	1

•

Measurement			1			2			3			4	
item		Quench tower	IWS	IWS	Quench tower	IWS	IWS	Quench tower	IWS	IWS	Quench tower	IWS	IWS
		inlet	inlet	outlet	inlet	inlet	outlet	inlet	inlet	outlet	inlet	inlet	outlet
Gas quantity	m ³ _N /min	13, 3			13.5			16, 9			16,9		4.1
H_2O	%	50, 4			50.4			50,4			50.4		
Odor concentration		7 300	540	170	9 700	730	300		970	730		1 700	970
Dust content	g∕m³ _N	11.7	4.32	0. 023 0	16.4	0.703	0, 043 8	15.8	0,435	0.152	12.6	0,499	0,138
$(CH_3)_2S$	ppm	0,013		0, 013				ļ					
$(\mathrm{CH}_3)_2\mathrm{S}_2$	ppm [·]	<0.001		< 0.001						•			
THC	ppm	1 400	420	75	1 800	640	420	1 800	680	450	1 800	1 100	360
$(CH_3)_3N$	ppm	0,003		0.003							.		
CH3CHO	ppm	<0.001		<0.001									
CH₃SH	ppm	<0,001		< 0,001									1997 - S. 1997 -
C_8H_8	ppm	< 0.001		< 0,001							1		
H₂S	ppm	0,018		0.013]]	-	•
$_{NH_{3}}$	ppm	5		3	17		9				· · ·		
Cl_2	ppm	ND	1.5	0, 5		ND _.	1, 5	ND	0, 5	ND	ND		0.2
Hci	ppm	510		2, 5						·			
CS_2	ppm	20	ND	ND	30	20	ND	28	24	ND	76	ND	. 40
CH₃Br	ppm	6	ND	ND	30	1	ND	ND	ND	ND	ND	ND	ND
SO2	ppm	50	ND	ND	ND	ND	ND	.2	ND	30	4	4	4
Br_2	mg∕m° _N	23	15	ND	30	29	1	37	29	10	41	35	11
SOx	ppm	60	21	ND	140	10	1.1	210	8.2	ND	550	150	82
a b b b b b b b b b b	mg∕m° _N	4.2/4.4	3,8/4,0	1,1/1,5	4.8/5.0	2.8/3.0	0.9/1.5	3.9/4.2	3.0/3.8	1.6/1.6	6.9/8.0	4,1/4,2	1,7/2,0
Size distribution	μm	1.45	1.39	1.58	1.53	1.34	0.38	1.90	1, 32	1, 22	0.010		· · ·
Hg	mg/m [°] N	0.069	0,067	0.058	0.044	0.043	0,044	0.061	0,068	0.054	0.046	0,057	0.054
Pu	l mg∕m° _N	160	69	3,5	160	· 74	2.7	150	42	14	170	83	25
NUx	ppm	52		27	l			L		l	l	<u>.</u>	

2表 Case 2 テスト結果 able 2 Test result of case 2

Maggingmont			1			2			3			4	
item		Quench tower	IWS	IWS	Quench tower	IWS	IWS	Quench tower	IWS	IWS	Quench tower	IWS	IWS
		inlet	inlet	outlet	inlet	inlet	outlet	inlet	inlet	outlet	inlet	inlet	outlet
)dor concentration	-	30 000	23 000	4 100	30 000	17 000	4 100	41 000	30 000	17 000		23 000	7 000
Just content	g/m ³ N	0.0828	0.0184	0.0084	0.114	0,0228	0.0047	0.0929	0, 015 5	0, 003 3	0.0478	0.0082	0.0039
Jas quantity	m ³ /min	48.5	39.5	39, 5	47.4	40.4	38.6	64.3	53.9	56.4	63.2	52, 2	50, 9
Jas quantity (wet)	m ³ _N /min	30.6	30, 8	30.9	32, 7	31, 5	30, 2	41.7	41.5	43.4	38.8	40.4	39, 5
Jas quantity (dry)	m ³ _N /min	19.2	19.5	20.5	21.8	19.9	19.5	26.2	24.8	26.6	27.6	25.5	26.0
Jas velocity	m/s	8.9	9.0	9.3	8.7	9,2	9.1	11.8	12.3	13.3	11.6	11.9	12.0
Static pressur	mmH₂O	-52	-74	-95	-70	84	-95	-104	-165	-203	-90	-160	- 200
Cemperature	°C	157	74	72	120	74	73	144	76	75	168	74	72
H ₂ O	%	37.2	36.7	33.8	33, 3	36.8	35, 3	37.2	40, 3	38.8	28, 8	37.0	34, 2
CO_2	%	6.8	6.3	5.1	6.7	6.4	5.8	6.9	6.6	6,6	6.8	6,4	5.9
O2	%	12.0	12.7	13.9	12.1	12,8	13,6	12,0	12, 2	12.3	12.2	12, 5	13, 0
N_2	%	81.2	81.0	81.0	81, 2	80, 8	80.6	81.1	81, 2	81.1	81.0	81.1	81.1
Br_2	mg∕m³ _N	42	23	16	32	22	19	38	33	22	35	34	31
Silane	mg∕m³ _N	4.3	1.9	1.4	3.0	1.7	1.2	3.4	1.6	1,5	4.4	2, 8	1,6
Size distribution	μm	1.67	0,92	1.47	1.62	1.33	1.47						

.

に示す。第1表から脱臭効率は97%と高い。ダスト除去 1率は流速が遅くなるに従い高くなる。(第6図)テスト の流速 0.7 m/sec~1.0 m/sec の範囲で除去効率は 99.7 \sim 98.8%と変化している。また,有害ガスである HCl よび SOx の除去率は99.5%および99.8%と高い。鉛の 法率は97.8%であった。なお、この時のダストの粒径分 下常7図に示す。図から、急冷塔入口、IWS入口および 口における粒径分布に差がないことがわかる。この事実 第3図で説明済の(NH₄)₂SO₈粒子の場合と一致する。 次に、原ガスをESP後から導入した場合についてもテ トを実施しその結果を第2表に示す。表から脱臭効率は 3%~86%であった。ダスト除去効率は90%~96%でテ

ト時の洗速の範囲内では大差がない結果となった。 また、臭素およびシランともにかなり除去されることも かった。なお、この時のダストの粒径分布を第8図に示 が、ESP出口とIWS出口における粒径分布に大差が かった。

第7図 粒度分布線図(Rosin-Rammler 線図) Fig. 7 Size distribution curve(Rosin-Rammler curve)

月3表 テスト結果

able 3 Test result

Measurement		Rı	in 1	Ru	n 2	Ru	n 3	Ru	in 4	Ru	n 5	Ru	n 6	Ru	n 7
Item		Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet
7. a guantitu	(wet)m ³ _N /min	27.3	30.5	27.3	30.5	50.5	60.7	50.5	60.7	23.0	28.0	.23.0	28.0	23.0	28.0
Jas quantity	(dry)m ³ N/min	19.8	21.5	19.8	21.5	37.8	42.3	37.8	42.3	15.8	18.8	15.8	18.8	15.8	18.8
Plate velocity	m/sec 100/ft./sec	1. 1'	.73 7.6	$1.73 \\ 17.6$		3.	3.21		3.21		46).9	1.46 20.9		1.46	
Dpacity	%		1		1	1	5		5		5	5		5	
Dust content	(dry)g/m³ _N	0.45	0.064	0,36	0.043	0.70	0.11	0.42	0.093	1.47	0.083	0.7	0.061	1.70	0.12
Removal efficiency	%		84.6		87.0		82.4		75.2		93,3		89.6		91.6
Soluble material	g/m ^N	0.31	0.045	0.27	0.022	0.52	0.063	0.32	0.047			1			
in dust	%	68,9	70.3	75.0	51.2	74.3	57.3	76.2	50,5						
Desoluble material	g/m' _N	0.14	0.019	0.09	0.021	0.18	0.047	0.10	0.046			j .			
in dust	%	31.1	29.7	25.0	48.8	25.7	42.7	23.8	49,5						
30x removal	(dry)ppm	43	ND(1)	15	ND(1)	14	ND(1)	20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
efficiency	%		97.7		93.3		92.9		95.0						
Hel removal	(dry)ppm	720	9	400	20	430	5	220	7	160	2				
efficency	(dry)mg/m [°] _N	1173	15	652	33	701	8	358	11	261	3				
	×0		98.7	- 10.0	94.9		98.9		96.9		98.8		10.0		
<u></u>	V/V %	13.1	14.0	13.0	14.0	12.9	13.0	13.4	13.6	12.7	13.7	12.7	13.9	ļ	
	v v ppm						ł			1				1	ľ
NII3	v/v_ppm								1	1			1	1	
Joor concentration			1		I			[1					L	I
Measurement		Rı	in 8	Ru	n 9	Ru	n 10	D.C. DOWE	r soume ON	DC none	SOUTH OFF	D.C. nowe	r course ON	D.C. nower	SOUTH OFF
Item		Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet
	(wet)m ³ ./min	25.0	29.0	15.2	19.3	15.2	19.3	26.3	30.0	26.3	30.0	24.9	31.3	23.7	27.0
Gas quantity	(drv)m ³ y/min	17.4	19.6	10.3	13.5	10.3	13.5	19.0	20.6	19.0	20.6	16.8	20.1	16.0	17.7
21	m/sec			0.	96	0.	96	1.	66	1.	66	1.	61	1.	54
Plate velocity	100/ft./sec			31	1.7	31	.7	18.4		18	8.4	18.9		19.8	
Opacity	%				1.		1		0	7	0	•	5	e	0
Dust content	$(dry)g/m_N^3$		1	1.63	0.047	1.88	0.038	1.372	0.096	0.886	0.468	0.454	0.056	0,365	0.232
Removal efficiency	· %			·	96.2		97.4		92.4	[42.7		85.2		29.7
Soluble material in dust	g/m³ _N %							4.3	1.06			1.72	1.08		
Desoluble material	g/m³ _N %														
SOr removal	(dry)nnm											1			
efficiency	%		1						1				1		
7.1	(dry)ppm										<u> </u>		·		
fici removal	(dry)mg/m ³ _N												l.		
efficency	%			1											1
0,	v/v %		1	1					1						
CH3CHO	v/v ppm		0.023		r										
NH3	v/v ppm		77	1					1						
NA		080	1 730	1	1		ł	1	1	1	1	1	1		1

Fig. 8 Size distribution curve (Rosin-Rammler curve)

前述のテスト結果から、煙突からの煙は、ダスト濃度を 1.05 g/m³N 以下におさえれば消えることがわかった。悪 臭の除去についても満足できる効果が得られたといえる。

!. 2 油泥+廃液焼却炉排ガス処理例

油泥および廃液をロータリーキルンで焼却している。排 がス中には、ダスト、HCI および SOx が含まれており、 その処理にESPが設置されている。問題となっていたの よ出口ダスト濃度が変動し、特に高電気抵抗ダスト時には 集塵効率が低下し煙が長くたなびく現象が長時間続くとい うことであった。この問題解決の目的でテストを実施した。 . 2.1 テスト方法

実施テストの外観を写真3に示す。フローは第4図とほ ま同じであるが,ケース2の場合に相当する。パイロット プラントのフローおよび仕様も2.1.1と同一である。 2.2.2 テスト結果

写真3 パイロットテスト Photo.3 Pilot test

原ガスを既設ESP後から導入しテストを実施した結果 を第3表に示す。表から、ダスト除去効率は75.2%~96.2 %と変化し、流速が大きくなるに従い低下する。荷電しな い場合のダスト除去効率は29.7%~42.7%となり極端に 悪くなる。また、排気中の煙の状態は、ダスト濃度を0.05g/m³N以下にまで処理すれば、ほとんど可視されないこ とがわかった。第9図にガス流速と集塵効率との関係を示 す。

急冷塔入口とIWS出口ダストの粒度分布は第10図に示 す通りであるが、前述のテスト結果とは若干異なりIWS 出口の方が粒度分布は小さい方に寄っていることがわかっ た。

第9図 ガス流速と集塵効率の関係

第10回 粒度分布図

第4表 IWS循環水水質 Table 4 Quality of IWS circulating water

	-
Sample water	IWS circulating water
pH Specific gravity SS (mg/ℓ) TS (mg/ℓ) BOD (mg/ℓ) COD (mg/ℓ) Lead (Pb) (mg/ℓ) Cadmium (Cd) (mg/ℓ) Electric $(\mu S/cm.25^{\circ}C)$ conductivity (Hg) and	8.9 1.035 2730 62400 114 510 3.84 0.29 41500
alkyl mercury other [mg/l] mercury compound	◯ <0. 0005

写 真 4 実装置外観 Photo. 4 Outside view of actual equipment

0 3 000

0.7

0.5

0.2

0.7

0.5

0.3

0.2

E 0.4

HOG

0 3 000

5 000

Gas velocity [kg/m²·h]

Ō

0 0

5 000

10 000

10 000

Gas velocity [kg/m²·hr]

[**m**] 50H

第11 図

HOG

Fig. 11

NaOH

第12 図

の HOG

Fig. 12

NaOH

SO2-AIR-NaOH 系

HOG of SO₂-AIR-

HCl-AIR-NaOH 系

HOG of HCI-AIR-

一方, 有害ガスである SOx および HCl については, 92.9 %~97.7 %および94.9 %~98.9 %であった。 この実験結 果から実装置が計画できるように, ガス吸収の移動単位高 さ HOG(m)を実験的に算出し第11図および第12図に示し た。

なお,実験時の循環水質は第4表の通りであった。

3. 実装置紹介

前述のテスト結果から,油泥+廃液焼却炉からの排ガス 処理装置を納入し,運転データを得たので報告する。写真 4に装置の外観を示す。ロータリーキルンで油泥を 焼却 し、2次燃焼炉では廃液を燃焼させ、2次燃焼炉の排ガス はガスクーラーで 350°Cまで冷却される。この 350°Cの 排ガス中のダスト,HCl, SOX および臭気を除去する目的 で IWS システムを設置した。

3.1 装置仕様

納入装置のフローを**第13図**に示す。また設計条件および 仕様は次の通りである。

処理ガス量		31 369 m³N/h					
処理ガス温	度及び湿度	350 °C, H ₂ O 9924 m ³ N/h					
入口ダストネ	農度	$1 \mathrm{g/m^3N}$					
出口ダストネ	農度	0.1 g/m ³ N					
入口 HCl 澧	虔	700 mg/m³N					
出口 HC1 澧	虔	200 mg/m ³ N					
入口 SOx 溏	度	150 ppm					
出口 SOx 溏	度	15 ppm					
脱臭効率		90 %					
排水量		1 m³/h					
排水水質		pH 8, SS 1000 mg/l,					
		塩濃度 6.5%					
装置仕様	急冷塔	$1830 \square \times 7000 ^{\text{H}}\text{mm}$					
		接液接ガス部カーボン製					
	IWS	$7\ 800\ {}^{ m L} \times 4\ 220\ {}^{ m W} \times 6100\ {}^{ m H}mm$					
		FRP製					
		高電圧部 30 kV×400 mA					

Vol. 36 No. 2 (1992/8)

Fig. 10 Size distribution curve (Rosin-Rammler curve)

第5表 性能テスト結果 Table 5 Performance test results

			Ru	n 1	Ru	n 2	Ru	n 3	Ru	n 4	Ru	n 5	Ru	n 6	Ru	n 7	Ru	n 8
Measurement item			Quench tower	IWS	Quench tower	IWS	Quench tower	IWS	Quench tower	IWS	Quench tower	IWS	Quench tower	IWS	Quench tower	IWS	Quench tower	IWS
		· · · · ·	inlet	outlet	inlet [.]	outlet	inlet	outlet	inlet	outlet	inlet	outlet	inlet	outlet	inlet	outlet	inlet	outlet
Gas quantity (actual)		m³/H	25 000	24 000	28 000	$21\ 000$	24 000	20 000	52 000	41 000								
Gas quantity (wet)		m³ _N ∕H	13 000	19 000	13 000	16 000	15 000	16 000	25 000	31 000					24 000	24 000	22 000	21 000
Gas quantity		m³ _N ∕H	10 000	11 000	9 800	9 600	12 000	10 000	16 000	15 000					13 000	11 000	12 000	10 000
Gas temperature		°C	248	77	308	77	150	72	280	82					264	84	287	82
Static pressure		nmH2O	- 30	-3	-22	-3	-17	3	-37	-5					-10	0	-10	0
0	CO ₂	%	6.6	6.6	6,4	6.4	4,6	4.6	6,8	7.8								
Composition	O2	%	11.4	11.4	11.8	11.8	13.8	13.8	10.8	9.8								
or dry gas	N_2	%	82.0	82.0	81.8	81.8	81.6	81.6	82.4	82,4								
H₂O		%	20,8	41.2	24.5	41.2	21.8	33.4	37, 2	50.7					46.1	54.7	46.2	50, 5
		g/m ³ N	4.82	0.139	6.42	0,054	3, 81	0.050	5.18	0.601	6.21	0,698	12.1	0,505				
Dust content		g/m ³ N	4.94	0,186	5,96	0,050	3, 53	0,079	6,27	0, 181	8,16	0.626	13.1	0.718				
		g/m ³ N	4,88	0.163	6.19	0,052	3.67	0.065	5.73	0.391	7.19	0,612	12,6	0,612	2.04	0,11	2,40	0.12
Hcl		mg/m ³ N															333	55
SOx		ppm															14	2, 3
NOx		ppm															64	52
Odor concentration		<u> </u>															410	170

急冷塔循環ポンプ	$50\ m^3/h{\times}22\ m{\times}7.5\ kW$
	SCS14製
IWS循環ポンプ	$250\ m^3/h \times 18\ m \times 22\ kW$
	SCS14製
NaOH 注ポンプ	$300~\ell/h\!\times\!30~m\!\times\!0.2~kW$

3.2 運転結果

現在, 順調に稼動中であるが, その運転および性能テス ト結果を第5表に示す。なお, 稼動中の急冷塔および IW S循環液の水質を第6表に示す。第5表からダスト除去効 率は91.5%~99.2%と変化し, ガス流速が上がるほど除 去効率が低下する。その様子を第14図に示す。また,入口 ダスト濃度と集塵効率との関係を第15図に示す。図から効 率は入口ダスト濃度が2g/m³N~13g/m³N の範囲では変 化のないことがわかる。一方,第5表から HCI, SOx およ び NOx の除去率はそれぞれ83%, 84%および19%であ った。また,脱臭効率は約60%であった。これは入口臭気 濃度が410という極めて低いことが原因で除去率が悪くな っているものと考えられる。以上の解析結果から,計画条 件をほぼ満足する運転が続いていることが実証された。

第	6	表	循環水水質	
Ta	ble	6	Quality of circulating wat	ter

		9		
Items		Quench tower circulating water	IWS circulating water	Mesurement method
pН		9.6(20°C)	9.4(20°C)	JIS K0102 12.1
SS	mg∕ℓ	160	80	
TDS	g/l	200	88	JIS K0102 14.3
Na ⁺	mg/ℓ	59 000	31 000	JIS K0102 48.1
Li⁺	mg∕ℓ		192	
CI-	mg/ℓ	20 000	8 100	
SO ₄	mg/l	8 200	2 800	JIS K0102 41.2
Specific)25°C) gravity		1.13	[.] 1. 08	
∥ (80°C)	-	1.10	1.06	

4. IWSの優位性

産業廃棄物焼却炉の排ガス処理に IWS を適用 した場合,他方式と比較して優位性の有無を把握する目的で,次の如き条件で検討した。

処理ガス量	40 000 m³N/h
入口ダスト濃度	3 g/m³N
出口ダスト濃度	0.03 g/m³N

第7表 各種プロセス比較表 Table 7 Comparison of various processes

	IWS		ESP + Scrubber		Reactor + Bag filter	
Flow						
Pressure drop (mmH ₂ O)	50		150		250 •	
Initial cost (×104YEN)	Quench tower IWS	1 000 9 000	ESP Quench tower Scrubber	12 000 1 000 3 000	Reactor Ca(OH) ₂ feeder Bag filter	5 000 2 000 8 000
	Total	10 000	Total	16 000	Total	15 000
Power cost (×104YEN/Y)	Quench tower IWS Fan	11 kW 22 18.5	ESP Quench tower Scrubber Fan	30 kW 11 22 75	Reactor Ca(OH) ₂ feeder Bag filter Fan	11 kW 5.5 3.7 110
	$Total \Xi = 51.5 \times 0.8 \times 8760= 650$	51.5 kW 0×18×10 ⁻⁴	$ \begin{array}{c} \hline Total \\ \blacksquare = 138 \times 0.8 \times 8760 \\ = 1,740 \end{array} $	138 kW ×18×10 ⁻⁴	$Total \mathfrak{F}=130.2 \times 0.8 \times 876=1,640$	130. 2 kW 0×18×10 ⁻⁴
Remarks	 Initial cost and running cost are low. Dust colletion efficiency is regardless of electrical resistance 				Non-wastewater treat	ment

0

0

入口 HCl	$1\ 000\ \mathrm{ppm}$
出口 HCl	10 ppm
入口 SOx	$1\ 000\ \mathrm{ppm}$
出口 SOx	$10~{ m ppm}$

対象プロセスには、 IWS方式、ESP+スクラバー方 式,および反応塔+バグフイルター方式を選定した。その 検討結果を第7表に示す。その結果, IWSの場合, 圧力

~

第15 図 入口ダスト濃度と集塵効率の関係

Fig. 15 Relation between inlet dust content and collection efficiency

損失が低く,建設費および電力費が最も安価であることが わかる。

む す U.

産業廃棄物焼却炉排ガス処理に新しいプロセスであるⅠ WSを適用し,その集塵,有害ガス除去および脱臭効果の 確認をした。今後、長期運転における効率および耐久性等 について追跡調査を続けてゆきたい。

99

90

80

70 60 50 0

0

25

Efficiency [%]