Examination of Glass for Glass-Lined Discharge Electrodes

In this work, we studied the effect of various elements on the relative dielectric constant, ε_r, by adding 1-3 mol% of an element to soda glass, 15Na$_2$O·15CaO·70SiO$_2$, the mother glass. The structure of the dielectric coating layer for the glass-lined discharge electrode was investigated in terms of the breakdown voltage and ε_r. It was found that most rare-earth elements (Pr, Lu, Eu, Gd, Sm) are more effective in increasing ε_r than other elements. From the viewpoint of the breakdown voltage of the glass-lined layer, it is desirable that a cover coating with a high ε_r is directly coated onto the base metal without using a ground coating with the low ε_r, to obtain the optimum improvement effects.

As the results of experiments, the 3CoO·3NiO·3MnO$_3$·3Pr$_6$O$_{11}$·30Bi$_2$O$_3$·20BaO·50B$_2$O$_3$ (mol%; CNMPBBB) glass was found to have a high ε_r of 16 and good adhesion with steel. CNMPBBB glass is highly promising for use in the glass-lined discharge electrodes.

Key Words:
- Relative dielectric constant
- Discharge electrode
- Glass lining
- Adhesion
- $\text{Bi}_2\text{O}_3\cdot\text{BaO}\cdot\text{B}_2\text{O}_3$ glasses

Introduction

There are some devices, such as an ozonizer, laser, and corona discharge surface treatment device, which utilize discharge between opposite dielectric coating discharge electrodes at high frequency and high voltage. Ceramic electrodes with a metal layer deposited on one side are utilized in small equipment. On the other hand, glass-lined electrodes and glass tube electrodes with a metal layer deposited inside the tube are utilized in large equipment. It is expected that the performance of such...
equipment will be improved by increasing the discharge power. The discharge power of the ozonizer is given by the following equation,

\[W = f \cdot C_g \cdot 2V' \left(2V_0 - (1 + C_o/C_g) \cdot 2V' \right) \]

where \(W \) is the discharge power, \(f \) is the frequency of the power source, \(C_g \) is the electrostatic capacity of the dielectric coating layer, \(C_o \) is the electrostatic capacity of discharge space, \(V_0 \) is the crest value of applied voltage and \(V' \) is the discharge sustenance voltage.

Therefore, increasing the electrostatic capacity of the dielectric coating layer is one method of effectively increasing the discharge power. It is possible to increase the electrostatic capacity of a dielectric coating layer by thinning the dielectric coating layer or by increasing the relative dielectric constant, \(\varepsilon_r \). It is more advantageous to increase \(\varepsilon_r \) rather than to thin the dielectric coating layer, in terms of the breakdown voltage. Some ceramics are known as high \(\varepsilon_r \) materials. Coste et al.\(^4\) reported that the efficiency of ozonization should be improved by using high \(\varepsilon_r \) ceramics as the dielectric coating layer of the discharge electrode. However, this is thought to be unsuitable for a large discharge electrode because of the restriction of the formability and workability of ceramics. It has been reported that the efficiency of ozonization can be improved by increasing \(\varepsilon_r \) of a dielectric coating layer composed of a mixture of glass and barium titanate.\(^4\) However, \(\varepsilon_r \) was not so high, about 5.8-6.6, contrary to the expectation. The reason is considered to be that a part of the high-dielectric-constant ceramics, BaTiO\(_3\), changes from crystalline to amorphous due to reaction with the glass at high temperature during enameling.

In this work, we studied the effect of various elements on \(\varepsilon_r \) by adding 1-3 mol% of an element to soda glass, 15Na\(_2\)O·15CaO·70SiO\(_2\), the mother glass. The structure of the dielectric coating layer for the glass-lined discharge electrode was investigated in terms of the breakdown voltage and \(\varepsilon_r \). On the basis of the results, glasses which are suitable for use in glass-lined discharge electrodes are examined.

1. Experimental

Reagent grade chemicals were used as starting materials. A batch of well mixed reagents was melted in atmosphere. The frit for the glass lining was prepared by water quenching, which means that the melt was directly poured into water. On the other hand, the slip for the glass lining was prepared by milling the frit with mill additions. 15Na\(_2\)O·15CaO·70SiO\(_2\) (NCS; mol%) glass was selected as the mother glass. Sample glasses were prepared by adding 3 mol% of each element (Pr\(_2\)O\(_3\), Lu\(_2\)O\(_3\), Rh\(_2\)O\(_3\), and Hf\(_2\)O\(_3\)) to the mother glass. Samples for the measurements of \(\varepsilon_r \) were polished to the dimensions of 15 × 15 × 1 mm\(^3\) and silver paste was applied to both sides of the sample as electrodes. Samples for the measurements of the breakdown voltage and the adhesion were prepared by lining glass on 100×100×3.2 mm\(^3\) shaped steel.

The relative dielectric constant was calculated from the obtained electrostatic capacity which was measured using an impedance analyzer (Yokogawa Hewlett-Packard, HP4192A). The glass transition temperature, \(T_g \), and softening point were determined by differential thermal analysis (DTA; Rigaku, TG8110). The thermal expansion coefficient, \(\alpha \), was determined using a thermomechanical analyzer (TMA; Rigaku, TMA8140). The breakdown voltages were measured in insulating oil using dielectric strength test equipment (Musashi Electric, IPK-50). For the evaluation of adhesion, samples were pressed by a 12.7-mm diameter hemispherical die with the load of 1.33 × 10\(^4\)N and loading time of 30 s. Adhesion was evaluated from the area of the left glass layer on the impression.

2. Results and discussion

2.1 Effects of each element on \(\varepsilon_r \)

Figure 1 shows the effect of each added element on \(\varepsilon_r \). The longitudinal axis shows the
ratio of measured ε_r for each sample to ε_r of the mother glass, while the horizontal axis shows
groups of the periodic table. It is found that
most rare-earth elements (Pr, Lu, Eu, Gd, Sm) are
more effective in increasing ε_r than other
elements. Furthermore, some non-rare-earth
elements, e.g., Bi, Ti, Nb, Ta and In, also show
good improvement effects on ε_r. It is known
that the addition of Bi, Ti or Ba, increases ε_r of
glass.7 In particular, Bi shows an excellent
improvement of ε_r in this study. However Pb, V
and Te showed only a slight improvement, contrary
to the expectation. This is because their vapor pressures
during melting are higher than those of other elements. For the
borate glass system, Ba, Bi and Nb were added to the
mother glass of 15BaO·15Na2O·70B2O3 (BNB; mol%) and the effects of each element on ε_r
were investigated. The behavior of ε_r improved
in the borate glass system, showing a tendency
similar to the silicate glass system, as shown in
Fig. 2.

2. 2 Effects of each element on T_g and α

The effect of various elements added to NCS on T_g
is shown in Fig. 3. The effect of various elements added to NCS on α is shown in Fig. 4.
As expected, elements which cause a rise of T_g
decrease α. Rare-earth elements which greatly
increase ε_r also tend to raise T_g but decrease α,
while Bi greatly increases ε_r, decreases T_g and
increases α. Based on the above results, Bi is
suitable as an additive to the glass lining to
increase ε_r and to adjust α of the glass to that
of the base metal.

2. 3 Composition of glass for glass lining

2. 3. 1 Silicate glasses

The borosilicate glasses have large thermal
expansion coefficients between T_g and the softening point. Therefore they tend to generate
the crack defect called the strain-line during enameling. Generally the corrosion resistance
of the borate glasses are inferior to those of
silicate glasses and borosilicate glasses. Therefore silicate glasses were investigated first. The
The glass transition temperature (T_g) and thermal expansion coefficient (α) of 15Na2O·15CaO·70SiO$_2$ mother glasses were investigated. The addition of Ba induces a large improvement of ε_r, and barium carbonate is available as the starting material. The melting temperature is expected to decrease, and the agitation effect is also induced by evaporation of carbon dioxide during melting when using a carbonate as a starting material. As a result of these experiments, Bi was found to induce the largest improvement effect on ε_r, other than rare-earth elements. Therefore the crystallographic and thermal expansion coefficients of 15Na2O·15CaO·70SiO$_2$ glasses containing various metal cations were investigated. The glass formation region for the Bi$_2$O$_3$-BaO-SiO$_2$ glass system is relatively wide. For the glass lining, slow heating and cooling are generally required in order to prevent the introduction of defects since the base metal possesses the large heat capacity. In particular, more time than in the usual application is necessary for heating and cooling with the glass-lined electrode application, to prevent distortion. Therefore the crystallization of the glass is difficult to avoid in this glass system.

2. 3. 2 Borate glasses

The borate glass system was also similarly investigated as in the case of the silicate glass system. The low corrosion resistance is a problem in borate glasses. However, the electrode is mostly used under the dry atmosphere condition, like the electrode of an ozonizer, so it is decided that the borate glasses can be used in electrode application. The Bi$_2$O$_3$-BaO-B$_2$O$_3$ glass system was selected for the same reason as in the case of the silicate glass system. It was found that 30Bi$_2$O$_3$·20BaO·50B$_2$O$_3$ (BBB; mol%) glass is suitable for adjusting the thermal expansion coefficient to approximately 1×10^{-3} /°C in order to line the steel and for preventing crystallization during the glass lining process. To induce a large improvement effect on ε_r, Pr was also added to the BBB glass. Therefore 3Pr$_2$O$_3$·30Bi$_2$O$_3$·20BaO·50B$_2$O$_3$ (PBBB; mol%) glass was selected from the compositions of Pr.
added to BBB. Table 1 shows the physical properties of PBBB glass. The relative dielectric constant of conventional glasses used as the glass lining for steel is estimated to be approximately 6 to 8. On the other hand, ε_r of PBBB glass is 17. The firing temperature of PBBB glass is 570°C which is 200°C lower than that of conventional glasses. The lower firing temperature is advantageous for electrode applications due to reduced distortion.

2. 4 Voltage assignment and breakdown condition of multilayer

The glass lining layer consists of two layers called the ground coat layer G/C and the cover coat layer C/C. The function of the G/C is to maintain a good adhesion with the base metal, while C/C has properties which are suitable for the intended application. When the step voltage V is applied at time $t=0$, the change on standing of electric field, E, is expressed as follows,

$$E_1 = \frac{\sigma_1}{\epsilon_1 d_1 + \sigma_1 d_1} V + \left(\frac{\epsilon_2}{\epsilon_2 d_2 + \sigma_2 d_2} - \frac{\sigma_2}{\epsilon_2 d_2 + \sigma_2 d_2} \right) \times V \cdot \exp \left(-\frac{t}{\tau} \right)$$

where, $\tau = (\epsilon_1 d_1 + \sigma_1 d_1) / (\epsilon_1 d_1 + \sigma_1 d_1)$.

The conductance of the glass used for the glass lining is very small, approximately 10^{-13} Sm$^{-1}$, therefore the strength of electric fields is decided by the capacity of each layer during a short period. When the high-frequency AC voltage is applied to the glass-lined layer, the electric field in each layer is shown as follows;

$$E_1 = \frac{\epsilon_1}{\epsilon_1 d_1 + \epsilon_2 d_1} V.$$

Consequently, the ratio of G/C to C/C is $E_2 : E_1 = \varepsilon_1 : \varepsilon_2$. When the breakdown voltages of G/C and C/C are approximately equal, it is possible that the layer which has the smaller ε_r will be broken down. A multilayer which consists of the two layers corresponds to a series connection of condensers as the equivalent circuit. Therefore the electrostatic capacity of the multilayer is strongly affected by the layer which has the smaller ε_r. If ε_r of only one layer is raised, the electrostatic capacity of the multilayer does not become high. When C/C with high ε_r overlies G/C with low ε_r, ε_r of the multilayer is not high. Furthermore, if G/C is broken down due to unequal voltage assignment, the high voltage will be applied only to C/C, breaking it down. Normally the thickness of G/C is 0.2 mm, while the thickness of C/C is 0.8 mm. If ε_rs of G/C and C/C are, respectively, 7 and 17, ε_r of the multilayer is estimated to be approximately 13. If a high voltage V_h is applied, the electric field of G/C is estimated to be $1.89 \frac{V_h}{d_1}$ MV/m and the electric field of C/C to be $0.78 \frac{V_h}{d_1}$ MV/m. If the values of breakdown voltage of G/C and C/C are almost equal at approximately 14 MV/m, it is necessary that the maximum applied voltage is below 7.4 kV (= 14/1.89) to prevent the breakdown of G/C. In the case of using G/C with low ε_r, it is necessary

<table>
<thead>
<tr>
<th>Properties</th>
<th>Measured values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative dielectric constant (at 150kHz)</td>
<td>17</td>
</tr>
<tr>
<td>tan δ (at 150kHz)</td>
<td>4×10^{-4}</td>
</tr>
<tr>
<td>Breakdown voltage</td>
<td>14 MV/m</td>
</tr>
<tr>
<td>Firing temperature</td>
<td>570°C</td>
</tr>
<tr>
<td>Thermal expansion (50~400°C)</td>
<td>1.07×10^{-5}ºC</td>
</tr>
<tr>
<td>Corrosion resistance</td>
<td>no deliquescence in atmosphere</td>
</tr>
</tbody>
</table>

Table 1 Physical Properties of $3\text{PrO}_3 \cdot 30\text{BiO}_3 \cdot 20\text{BaO} \cdot 50\text{B}_2\text{O}_3$ガラス

$E_2 = \frac{\epsilon_1}{\epsilon_1 d_1 + \epsilon_2 d_1} V$.

Vol. 42 No. 1 (1998/9)
that the applied voltage is set at a low level even if C/C with high \(\varepsilon_r \) is used. From the viewpoint of the breakdown voltage of the glass-lined layer, it is desirable that C/C with high \(\varepsilon_r \) is directly lined on the base metal without using a G/C with low \(\varepsilon_r \), to achieve optimum improvement effects.

2.5 Improvement of the adhesion between the glass and the base metal

Normally Co, Ni and Mn are added to the conventional G/C in order to increase the adhesion between the glass and the base metal,\(^{10}\) because the adhesion is generally preferred to be very high. Therefore Co, Ni and Mn were added to PBBB glass to improve the adhesion, in the form of a compound with the composition of 3CoO·3NiO·3MnO₂·3Pr₂O₃·30Bi₂O₃·20BaO·50B₂O₃ (mol%; CNMPBBB). The result of the adhesion test is shown in Fig. 5. It can be seen from the figure that a part of the CNMPBBB glass layer remained after pressing, while the PBBB glass layer was completely removed after pressing. Moreover, the properties of the CNMPBBB glass system given in Table 2 show that \(\varepsilon_r \) of CNMPBBB glass is 16 which is lower than \(\varepsilon_r \) of PBBB glass due to the addition of Co, Ni and Mn. In conclusion, from the viewpoint of \(\varepsilon_r \) and adhesion, CNMPBBB glass is highly promising for use in glass-lined discharge electrodes.

Conclusion

The results of this study are summarized as follows.

(1) The effect of various elements on the relative dielectric constant (\(\varepsilon_r \)) was investigated by adding 1-3 mol% of an element to soda glass. It was found that most rare-earth
elements (Pr, Lu, Eu, Gd, Sm) are more effective in increasing ε_r than other elements.

(2) From the viewpoint of the breakdown voltage of the glass-lined layer, it is desirable that a cover coat with high ε_r is directly lined on the base metal without using a ground coat with low ε_r, in order to obtain the optimum improvement effects.

(3) $3\text{CoO}\cdot3\text{NiO}\cdot3\text{MnO}_2\cdot3\text{Pr}_6\text{O}_{11}\cdot3\text{Bi}_2\text{O}_3\cdot50\text{BaO}\cdot50\text{B}_2\text{O}_3$ (mol%: CNMPBBB) glass has a high ε_r of 16 and good adhesion with steel. CNMPBBB glass is highly promising for use in glass-lined discharge electrodes.

References
3) P. Sherman, Pap. Film & Foil Converter, 60, 90-92 (1986).