TECHNICAL NOTE

気液二相流の水撃現象の概要

伊藤裕

技術開発本部 開発企画室 室長 工学博士

まえがき

気体と液体とが同時に流れる系を気液二相流と呼 ぶ。当社の製品の中でも曝気槽内に空気を吹込む散 気装置等で日常的に気液二相流を取扱っている。と ころで配管中で気液二相流になった場合には,液単 独で流れる場合に対して多くの異なった現象が見ら れる。当社は水処理以外にも有機性固体廃棄物のメ タン発酵にともなう電気・熱回収プラントなど,各 種の気液二相流を扱う事例が今後,増えてくると思 われる。ここでは,配管系の気液二相流についての 概要を示した後,プラントでしばしば見られ,かつ 配管系に破損を与える可能性がある気液二相流の水 撃現象について示すことにする。

1. 気液二相流の概要

液が単相で流れる場合,その流動様式は1種類し かないが,気液二相流になれば,図1に示すように 多様な流動様式が生じる。一般に気液二相流では気 体流量が増加するにしたがって,次の流動様式とな る。

- (a)気 泡 流:連続した液体中に気泡の分散した流れで、比較的均一な液体として扱える。
- (b) スラグ流:流路断面を大きな気泡塊と、小 さな小気泡を含む液体とが交互 に流れるもの。
- (c)環状噴霧流:連続相は気体で、分散相は液体で、気体流中に微少液滴を含む流れ。

(d) 噴 霧 流:液滴が気相に飛散している流れ。 なお配管が水平,垂直のいずれかによって,上記に

Vol. 47 No. 1 (2003/8)

0 0 0 000 0 °°°° 00 000 Mist Flow 0 Flow 0 20000 Flow Mist Flow Annular Bubbly 0 Slug • 0 0 a) 9 Ð 図 1 流動様式(垂直管の場合) Fig. 1 Flow pattern (vertical flow)

加えてさらに層状流,波状流,プラグ流(水平管), フロス流,環状噴霧流(垂直管)を追加する場合も ある。

図2にWeismanによる気液二相流の流動様式線 図を示す。ここで気体,液体の見かけの流速 jg と jl は気体,液体の次式のように定義され,これらの 値を図2に適用することで,気液二相流の流動様式 が大まかに予測できると言われている。

$$Qg/A = jg = u_{go}$$
 (m/s)
 $Ql/A = jl = u_{lo}$ (m/s)
 ϕ_1, ϕ_2 は補正係数⁽¹⁾
(1)

2. 水撃現象の基本

流体が流れている配管系において弁を急閉鎖すれ ば水撃現象が発生し、急激な圧力上昇とそれに続く 流体振動が発生する。この水撃現象は弁の急閉鎖以 外にも、ポンプトリップで流体が急激に停止した場 合にも発生するので、プラントの設計に注意を要す る問題である。ここでは単相流における水撃現象を 示した上で、気液二相流で生じる水撃現象を示す。 1)過渡圧力の基本的特性

単相水撃現象を図3左図のような下流端に急閉鎖 弁と管路上流端に大容量で圧力一定の貯圧タンクか ら構成されている管路で考察する。

弁を急閉鎖すれば水撃現象によって圧縮波が発生 し,図3中の線(a)のように管路上流に向かって伝 播する。上流端に進行波が到達すれば,負の膨張波

図 2 管流動様式線図(垂直管の場合) Fig.2 Flow pattern diagram

に転じて再び管路下流に向かって伝播し,図3中の 線(b)のように圧力はいったん元の圧力に下がる。 この後退波が下流端に達すれば,固定端に相当する 弁で負の圧力波のままで反射され,上流に向かって 再度伝播するので,結果的に各管路の軸方向の圧力 はさらに低下していく(図3中の(c))。またこの負 の圧力波が上流端に達すれば,圧力波の振幅の向き が変わり,正の圧縮波となって下流端に戻る(図3 中の(d))。このように振幅の向きをそれぞれ変化さ せながら圧力波が管路を往復するので,結果的に実 験結果の図4のように各軸方向の位置の圧力は正弦 波的な周期波動を生じることになる。

2) 液単相水撃現象の音速とポテンシャルサージ

水撃現象が生じて圧力波が管路中を往復する際, その圧力波の伝播速度は液中の音速であり,その値 は式(2)で与えられる。

$$a_s = \sqrt{\frac{K/\rho l}{1 + (K/E)(D/e)}} \tag{2}$$

水撃現象による圧力上昇値はポテンシャルサージ $\Delta P_{ps} = P_2 - P_1$ (P_1 :上昇前の圧力, P_2 :上昇後の 圧力)と呼ばれ,単相水撃現象時には次式で示され る。

$$\Delta P_{ps} = P_2 - P_1 = \rho l \times a_s \times u_{lo} \tag{3}$$

上式は Joukowsky の式と呼ばれ、単相水撃現象での 圧力上昇値を与えるものである。

神鋼パンテツク技報

Vol. 47 No. 1 (2003/8)

図 5 水撃現象の生じる流動様式

Fig.6 Water hammer phenomena in two phase flow (bubbly flow)

3. 気液二相流の水撃現象

3.1 気液二相流の流動と水撃現象の特長

二相流においては単相流の場合と異なり,図5の ように流動状況によってそれぞれ水撃現象の特性が 異なる。スラグ流,環状流でも水撃現象は生じるが, 圧力上昇が顕著であるのは気泡流であるため,ここ では主に気泡流についての水撃現象について述べる。

図5でボイド率分布一定の気泡流とは、管路全長 にわたって管路断面積の空隙率(ボイド率)が一定 の場合を言い、またボイド率変化する系とは、液単 相の流路の途中に気相注入部があって、その地点よ り下流側が二相流になっている管路をいう。

3.2 ボイド率分布一定の気泡流

軸方向ボイド率分布が一様であり、上流側の大容 量サージタンクと下流端の急閉鎖弁で構成される図 6の流路系を例にとって気液二相流の水撃現象を説 明する。

管路下流端の弁急閉鎖によって図6の圧力応答波 形のような水撃現象が生じる。弁急閉鎖によって閉 鎖点近傍で急激な圧力上昇が生じ,この圧力波は単 相流の場合と同じように伝わって,全体として正弦 波的に近い圧力応答となる。第1波目の圧縮波の波 面はステップ状であり,衝撃波的形状を呈している

図 7 圧力波伝播速度 Fig.7 Velocity of pressure wave

のに対して,第2波以降はなだらかな形状となるこ とが特徴である。ここでは気液二相流の水撃現象で 最初に生じた衝撃波的な圧縮波の伝播速度を*C*₀ と し,膨脹波および第2波以降の圧縮波のなだらかな 圧力波の伝播速度を*D*₀ として両者を区別する。 3)衝撃波的圧縮波の伝播速度

均質気泡流中の衝撃波の伝播速度 C_{ψ} は Campbell らの静止衝撃波の等温モデルを対象に、次式のよう に表されている。

$$C_{lp} = \sqrt{\frac{P_2}{\alpha_1(1-\alpha_1)\rho_l}} \tag{4}$$

図7に衝撃波的圧縮波の伝播速度の実験値 C_{μ} と、 ボイド率 α_1 との関係が示されている。この図のように気泡流における圧縮波の伝播速度 C_{μ} はボイド率に対してほぼ1つの曲線上で表される。

4) なだらかな圧力波の伝播速度

膨張波の伝播速度は,Henry らによる微小振幅圧 力波の伝播速度は等温および断熱均質流モデルによっ て次式で与えられる。膨脹波などなだらかな圧力波

Vol. 47 No. 1 (2003/8)

の伝播速度は式(5)の微小振幅圧力波の音速式で表 される。

$$D_{lp} = \sqrt{\frac{P_1}{\alpha_1(1-\alpha_1)\rho_l}} \tag{5}$$

5)ポテンシャルサージ

弁急閉鎖によって生じる圧力上昇,すなわちポテ ンシャルサージの値は水撃現象での安全解析上,重 要な因子のひとつである。気泡流のポテンシャルサー ジについては単相水撃現象と同様に以下の式で求め られる。

$$\Delta P_{ps} = [液中の圧力波の伝播速度] × [液密度] × [液流速] = C_{lp}(1-\alpha_1)\rho_l u_{lp}/(1-\alpha_1) = C_{lp}\rho_l u_{lo}$$
(6)

で表される。上式のポテンシャルサージと実験結果 とを図8に示す。このようにボイド率が大きい範囲 (スラグ流領域)では偏差が生じるが,気泡流領域 ではポテンシャルサージ Δ*P*_{ps} は単相流と同形式で ある式(6)で表される。

6) 水撃現象の防止

弁をゆっくりと閉鎖すれば水撃現象は生じないこ とは感覚的に理解できる。これを以下の圧力波の伝 播で説明する。弁閉鎖を開始すれば水撃作用によっ て系内圧力が上昇を始めるが,弁を閉鎖しきるまで に圧力波が管路を往復し,膨張波となって帰還すれ

ば, 圧力はポテンシャルサージ Δ*P*_{ps} の値までに至ることなく低下する。管路長さを*L*とすれば, 圧力波が往復するまでの時間は以下のように示される。

$$\tau < \frac{L}{C_{\iota p}} + \frac{L}{D_{\iota p}} \tag{7}$$

すなわち,式(7)で示される時間τ以上に弁をゆっ くりと締切れば,圧力上昇はポテンシャルサージ ΔP_{ps}の値まで圧力上昇が生じることなく,また水 撃現象を防止することができる。

3.3 不連続なボイド率変化のある場合

前節では軸方向のボイド率が一定の気泡流で発生 する水撃現象を解説したが,実際の配管系ではボイ ド率が一定でない場合が多く,例えば配管中に気体 を注入している場合などはボイド率分布が流れの途 中から急激に変化している。ここでは「上流側は単 相流部,下流側は二相流」という不連続なボイド率 変化のある管路系を対象に水撃現象を述べる。

1) 不連続ボイド率管路の圧力応答波形

図9に対象とする管路モデルと実験結果(実線(a)) を示す。また比較のため、前述のように管全長にわ たってボイド率が一定である気泡流での実験例を同 図中(b)で示す。上流側に単相流部がある管路(a)で は第1波内の圧力波の形状は(b)と大きく異なって いる。弁急閉鎖により木端弁近傍の圧力は、ポテン シャルサージ ΔP_{ps}の値まで上昇するが(この値を 初期ポテンシャルサージと呼び、その後の圧力上昇 と区別する)、その後さらにステップ状の圧力上昇 *m*が生じて最大圧力上昇値 Δ*P* max に達する。ま た管路の中間点近傍での圧力は *p' m' n* のように

Fig. 9 Water hammer phenomena in pipeline which pours in air bubbles

神鋼パンテツク技報

Fig. 10 Water hammer phenomena with two or more steps of pressure rises

図 11 複数段の圧力上昇のモデル図

複数段の圧力上昇が見られる。

2) 複数圧力上昇が生じる理由

一般に弾性力学の問題として,密度の異なる材質 の境界面に圧力波が到達した場合,その境界面で圧 力波の反射と通過が生じることが知られている。二 相流と単相流の界面でも両者の密度が異なるために, その界面で反射,通過が生じる。

- ① 二相流から単相流のように、疎から密な相に 圧力波が進行すると、圧力波は境界で一部反射 波となるが圧力波の振幅の向きは変わらない。
- ② 単相流から二相流のように、密から疎な相に 圧力波が進行すると、境界で反射が生じ、反射 された圧力波の振幅は逆転する。

この概念をもとに圧力応答波形と,その圧力応答波 形が進行するダイヤグラムとを対応させたものを図

Vol. 47 No. 1 (2003/8)

10に示す。この図は圧力波の挙動を明確にするため に圧力波を矩形にして図式化したもので,実線は圧 縮波,破線は膨脹波を表す。この図で説明できるよ うに複数圧力上昇は二相-単相界面での圧力の反射 で生じているのである。

3) 圧力上昇段数

系の設計に際し,最大圧力上昇値を求めるために は,圧力上昇段数を予測する必要がある。

不連続なボイド率変化のある流路で生じる圧力上 昇の段数は下記の式で表される。

$$n-2 < \frac{C_{tb}}{a_s} \frac{Ls}{L_{tb}} < n-1 \tag{8}$$

4) 反射率と透過率

図11に示されるような気液二相流界面 ($Z = L_{ip}$) に圧力波 ΔP_i が到達すれば,この反射波 ΔP_r と通 過波 ΔP_p とが生じる。反射率と通過率を αr と βr とすれば,これらは次式で示される。

$$\alpha r = \frac{\Delta P_r}{\Delta P_i} = \frac{\rho L a_s - \rho_{rp} C_{rp}}{\rho L a_s + \rho_{rp} C_{rp}}$$

$$= \frac{a_s - (1 - \alpha_1) C_{lp}}{a_s + (1 - \alpha_1) C_{lp}}$$
(9)

$$\beta r = \frac{\Delta P_p}{\Delta P_i} = \frac{2\rho_l a_s}{\rho_l a_s + \rho_{lp} C_{lp}}$$

$$= \frac{2a_s}{a_s + (1 - \alpha_1) C_{lp}}$$
(10)

Fig.11 Schematic drawing of multi pressure rises

5) 最大圧力上界值

図11に複数段の圧力上昇のモデル図が示されている。弁急閉鎖により生じた ΔP_{ps} の大きさの圧縮波は図中の点 A1→D1に進み,点 D1で反射されて以下 D1→A2→D2→A3と反射を繰り返して未端弁近傍の圧力上昇を順次増加させていく。一方境界点D1を通過した圧縮波は B1で反射されて負圧波となり B1→C1に沿って末端弁に戻り,圧力上昇を低下させる。その間,末端弁近傍の圧力は A1, A2,••Anまで n 段の圧力上昇を生じているので,An での最大圧力上昇値をとることになる。n 段上昇した場合の最大圧力上昇値 ΔP_n は次式で表される。

$$\frac{\Delta P_n}{\Delta P_s} = 1 - \left(\frac{1-\phi}{1+\phi}\right)^n (1+\phi)$$

$$\phi = (1-\alpha_1) C_{tb}/a_s$$
(11)

以上のようにボイド率,二相流長さ,流速の初期 条件を与えてやれば,式(8)によって圧力上昇段数 nが求まり,さらにこのnと式(11)をもちいて最大 圧力上昇値 ΔP_n が求まる。図12に未端での初期ボ イド率 α_1 と最大圧力上昇値の比 $\Delta P_n/\Delta P_s$ の関係が 示されている。この図のように $\Delta P_n/\Delta P_s$ の値はボ イド率とともに減少する傾向があり,同図中の式 (11)による解析値で予測することができる。

3.4 その他の流動様式

ここでは典型的な二相流の水撃現象として,気泡 流を取り上げ,その特異な特性を示した。

なお流動様式がスラグ流の場合や,蒸気一水系の ように水撃の途中で気液相の間で凝縮・蒸発が生じ る場合はさらに別の現象が生じるが,基本的にここ で示した空気一水系の気泡流の場合よりも圧力上昇 値(ポテンシャルサージ)は低い方向となる。系の 安全設計という面では本報で示した気泡流を考慮し ておけば十分と思われ,その他の流動様式の場合の 記述を割愛した。気泡流以外の流動様式に対する水 撃現象および,気液二相流で生じる各種の動的な現 象は参考文献の図書''に示されている。

むすび

気液二相流の水撃現象の典型的な特性を紹介した。 当社は、(株)神戸製鋼所都市環境・エンジニアリン グカンパニーの一部と2003年10月1日付けで統合す ることが予定されており、技術範囲も今後さらに拡 大していくものと思われる。とくに気液二相流は水 撃現象のほかにも単相流と違った固有の流動特性が 多くある。本件がこれらの技術的一助になれば幸い

図 12 最大圧力上昇比 Fig.12 Ratio of maximum pressure rises

である。

- [参考文献]
- 1)藤井照重,赤川浩爾,伊藤裕:気液二相流の動的配 管計画,(1999),日刊工業新聞社
- [使用記号]
 - Q_{g}, Q_{l} :気体,液体の体積流量
 - u_g , u_l : 気体,液体のみかけの流速
 - A :管路断面積
 - K :液体の弾性係数
 - E:管材質の弾性係数
 - D : 管の内径
 - e : 管肉厚
 - *L* : 管路長さ
 - ρ_g , ρ_l : 気体, 液体の密度
 - *a*_s:単相の流速
 - *u* : 流速
 - *u*_{lo}:液のみかけの流速
 - α :ボイド率
 - P : 圧力
 - 添字
 - g : 気体
 - 1:液体
 - · ixii 1 : 初期状態
 - 2 : 水撃後
 - 2:小学(
 - ゆ:二相流
 か:ポテンシャルサージ