A1 = -1 ··-				A1 -
納入時期	水素ガス発生量	水素ガス発生圧力	使用目的	納入先
1993年7月	0.72 m ³ /h(Normal)	0.4MPa (Gauge)	耐久試験器	
1995年5月	10 m ³ /h(Normal)	0.4MPa (Gauge)	低圧実証機	
1995年6月	0.24 m ³ /h(Normal)	3 MPa (Gauge)	高圧テスト機	
1996年3月	5.0 m ³ /h(Normal)	0.95 MPa (Gauge)	高圧実証機	
1996年7月	7.5 m ³ /h(Normal)	0.4MPa (Gauge)	LED製造	某化学メーカー
1997年7月	15 m ³ /h(Normal)	0.9 MPa(Gauge)	半導体製造	某半導体メーカー
1997年12月	5 m ³ /h(Normal)	0.4MPa (Gauge)	発電機冷却 (火力発電所)	トルコ
1998年3月	10 m ³ /h(Normal)	0.4MPa (Gauge)	LED製造	某化学メーカー
1999年3月	3.6 m ³ /h(Normal)	0.82MPa (Gauge)	CVD研究	某国立研究所
1999年3月	0.5 m ³ /h(Normal)	0.4MPa (Gauge)	CVD研究	某鋼板メーカー
1999年3月	1.0 m ³ /h(Normal)	0.4MPa (Gauge)	燃料電池用	某社
1999年5月	20 m ³ /h(Normal)	0.4MPa (Gauge)	コンデンサー製造	電子部品Aメーカー
1999年9月	10 m ³ /h(Normal)	0.4MPa (Gauge)	金属還元用	某鉄鋼メーカー
1999年10月	20m ³ /h (Normal)	0.82MPa (Gauge)	半導体製造	某電子部品メーカー
1999年11月	3.3 m³/h(Normal) × 2ユニット	0.4MPa (Gauge)	発電機冷却 (火力発電所)	ベトナム
1999年11月	2 m ³ /h(Normal)	0.4MPa (Gauge)	研究用	某化学メーカー
1999年12月	2 m ³ /h(Normal)	0.4MPa (Gauge)	燃料電池用	某社
2000年3月	5 m ³ /h(Normal)	0.8 MPa (Gauge)	試験用	某社
2000年5月	20m ³ /h (Normal)	0.82MPa (Gauge)	研究用	某化学メーカー
2000年7月	10 m ³ /h(Normal)	0.82MPa (Gauge)	半導体製造	某電子部品メーカー
2000年7月	18m³/h (Normal)	0.82MPa (Gauge)	半導体製造	某電子部品メーカー
2000年8月	10m ³ /h(Normal)	0.4MPa (Gauge)	コンデンサー製造	電子部品Aメーカー
2000年9月	6 m ³ /h(Normal)	0.4MPa (Gauge)	コンデンサー製造	電子部品Aメーカー
2000年9月	1 m ³ /h(Normal)	0.4MPa (Gauge)	試験用	某社
2000年10月	15 m ³ /h(Normal)	0.4MPa (Gauge)	コンデンサー製造	電子部品Aメーカー
2000年11月	20 m ³ /h(Normal)	0.4MPa (Gauge)	コンデンサー製造	電子部品Aメーカー

納入時期	水素ガス発生量	水素ガス発生圧力	使 用 目 的	納入先
2000年12月	30 m³/h(Normal)	0.4MPa (Gauge)	コンデンサー製造	電子部品Aメーカー
2001年1月	20m³/h (Normal)	0.4MPa (Gauge)	粉末冶金製造	某金属加工メーカー
2001年1月	1m³/h(Normal)	0.9 MPa(Gauge)	燃料電池用	某社
2001年2月	2.5m ³ /h (Normal)	0.82MPa (Gauge)	コンデンサー製造	某電子部品メーカー
2001年3月	7m³/h(Normal)	0.4MPa (Gauge)	半導体用部品	非鉄金属メーカー
2001年8月	10m³/h (Normal)	0.82MPa (Gauge)	半導体製造	某電気メーカー
2001年8月	3.5m ³ /h(Normal)	0.4MPa (Gauge)	電子部品製造	某電子部品メーカー
2001年8月	30m ³ /h(Normal)	0.82MPa (Gauge)	半導体製造	某電気メーカー
2001年10月	3m ³ /h(Normal)	0.82MPa (Gauge)	アルゴンガス精製	某工業ガスメーカー
2001年11月	50m ³ /h(Normal)	0.4MPa (Gauge)	半導体製造	電子部品Aメーカー
2001年12月	4.5m ³ /h (Normal)	0.4MPa (Gauge)	発電機冷却 (火力発電所)	トルコ
2001年12月	2m³/h(Normal)	0.82MPa (Gauge)	CVD研究	某電気メーカー
2002年1月	5.8m ³ /h(Normal)	0.4MPa (Gauge)	半導体製造	電子部品Bメーカー
2002年3月	1m³/h(Normal)	0.85 MPa(Gauge)	燃料電池用	某社
2002年12月	10 m ³ /h(Normal)	0.8 MPa(Gauge)	CVD研究	某国立研究所
2003年1月	5m ³ /h(Normal)	0.4MPa (Gauge)	金属還元用	某非鉄金属メーカー
2003年3月	20m³/h(Normal)	0.4MPa (Gauge)	コンデンサー製造	電子部品Aメーカー
2003年8月	10m ³ /h(Normal)	0.4MPa (Gauge)	燃料電池用	某電機メーカー
2003年8月	1m³/h(Normal)	0.2 MPa(Gauge)	エネルギー研究	某社
2003年10月	5m³/h(Normal) × 2ユニット	0.4MPa (Gauge)	金属還元用	金属部品Aメーカー
2003年12月	1m ³ /h(Normal)	0.6 MPa (Gauge)	燃料電池用	某社
2003年12月	30m ³ /h (Normal)	0.4MPa (Gauge)	コンデンサー製造	電子部品Aメーカー
2004年2月	5m ³ /h(Normal)	0.4MPa (Gauge)	エネルギー研究	某社
2004年3月	1.25m ³ /h(Normal)	0.85 MPa(Gauge)	エネルギー研究	某社
2004年3月	5m³/h(Normal) ×2ユニット	0.4MPa (Gauge)	金属還元用	某車両メーカー
2004年7月	5m ³ /h(Normal)	0.4MPa (Gauge)	燃料電池用	エネルギー会社A

納入時期	水素ガス発生量	水素ガス発生圧力	使用目的	納 入 先
2004年8月	4m ³ /h(Normal)	0.4MPa(Gauge)	工具製造用	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2004年10月	1m³/h(Normal)	0.95MPa(Gauge)	研究用	某公立研究所
2004年10月	5m ³ /h(Normal)	0.4MPa(Gauge)	資源回収 	│ 某素材メーカー ├─────
2004年10月	5m ³ /h(Normal)	0.4MPa(Gauge)	ソーラー用	某社
2005年3月	20m ³ /h (Normal)	0.82MPa (Gauge)	電子部品製造	電子部品Cメーカー
2005年3月	5m³/h(Normal)	0.4MPa (Gauge)	燃料電池用	エネルギー会社A
2005年11月	5m³/h(Normal)	0.4MPa(Gauge)	燃料電池用	エネルギー会社A
2005年12月	6m³/h(Normal)	0.4MPa(Gauge)	発電機冷却 (火力発電所)	アラブ首長国連邦
2006年1月	60m³/h (Normal)	0.82MPa (Gauge)	廃棄物処理	某社
2006年2月	5m³/h(Normal)	0.4MPa(Gauge)	金属還元用	某金属加工会社
2006年2月	1m³/h(Normal)	0.4MPa(Gauge)	燃料電池研究用	某社
2006年3月	1m³/h(Normal)	0.4MPa(Gauge)	燃料電池研究用	エネルギー会社A
2006年8月	5m³/h(Normal) × 4ユニット	0.4MPa(Gauge)	金属熱処理用	熱処理会社A
2006年8月	1m ³ /h(Normal)	0.6MPa(Gauge)	アルコ゛ンカ゛ス精製	某工業ガスメーカー
2006年8月	5m³/h(Normal)	0.4MPa(Gauge)	金属熱処理用	熱処理会社B
2006年10月	5m³/h(Normal)	0.82MPa (Gauge)	研究用	某電子部品メーカー
2006年10月	5m³/h(Normal)	0.4MPa(Gauge)	燃料電池研究用	エネルギー会社A
2006年12 月	5m³/h(Normal)	0.82MPa (Gauge)	半導体開発 (高純度仕様機)	某半導体製造会社
2007年2月	1m³/h(Normal)	0.82MPa (Gauge)	観測用	某社
2007年3 月	5m³/h(Normal)	0.4MPa(Gauge)	半導体製造	電子部品Bメーカー
2007年8月	5m ³ /h(Normal) × 2ユニット	0.4MPa(Gauge)	発電機冷却 (火力発電所)	ベトナム
2007年8月	10m ³ /h(Normal)	0.4MPa (Gauge)	金属部品鑞付	某自動車部品メーカー
2007年8月	20m³/h (Normal)	0.82MPa (Gauge)	電子部品製造	電子部品Cメーカー
2007年10月	5m³/h(Normal)	0.4MPa(Gauge)	燃料電池研究用	電子部品Aメーカー
2007年11月	20m³/h (Normal)	0.82MPa (Gauge)	電子部品製造	電子部品Cメーカー
2007年12月	20m ³ /h (Normal)	0.4MPa(Gauge)	電子部品製造	電子部品Aメーカー

納入時期	水素ガス発生量	水素ガス発生圧力	使 用 目 的	納入先
2007年12月	5m³/h(Normal)	0.4MPa (Gauge)	金属熱処理用	某金属部品メーカー
2008年1月	5m³/h(Normal)	0.4MPa (Gauge)	金属熱処理用	金属部品Aメーカー
2008年3月	5m³/h(Normal) ×3ユニット	0.4MPa (Gauge)	金属熱処理用	熱処理会社A
2008年4月	5m ³ /h (Normal)	0.4MPa (Gauge)	金属熱処理用	熱処理会社A
2008年5月	5m ³ /h (Normal)	0.4MPa (Gauge)	金属熱処理用	熱処理会社B
2008年8月	5m ³ /h (Normal)	0.82MPa (Gauge)	半導体開発用	半導体装置会社
2009年3月	5m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	エネルギー研究	某社
2009年5月	5m³/h(Normal) × 2ユニット	0.82MPa (Gauge)	半導体開発用	某電気部品製造
2009年12月	20m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	エネルギー	某社
2009年12月	5m ³ /h (Normal)	0.82MPa (Gauge)	半導体製造	某半導体メーカー
2009年12月	5m ³ /h (Normal)	0.82MPa (Gauge)	燃料電池研究用	某社
2010年2月	5m ³ /h (Normal)	0.82MPa (Gauge)	研究用	某社
2010年4月	3m ³ /h (Normal)	0.82MPa (Gauge)	エネルギー開発	某社
2010年8月	5m ³ /h (Normal)	0.4MPa (Gauge)	電子材料製造	某化学メーカー
2010年9月	5m ³ /h (Normal)	0.4MPa (Gauge)	電子材料製造	某化学メーカー(中国)
2010年10月	1m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー研究	某社
2011年1月	5m ³ /h (Normal)	0.82MPa (Gauge)	半導体開発	某大学
2011年2月	20m ³ /h(Normal)	0.4MPa (Gauge)	FC開発	電子部品Aメーカー
2011年3月	5m ³ /h(Normal)	0.4MPa (Gauge)	金属熱処理用	金属部品Aメーカー
2011年9月	12m ³ /h (Normal)	0.82MPa (Gauge)	太陽光パネル開発	某社
2012年1月	1m ³ /h (Normal)	0.7MPa(Gauge)	エネルギー研究	某所
2012年2月	5m ³ /h(Normal)	0.4MPa (Gauge)	金属熱処理用	某金属製品メーカー
2012年5月	5m ³ /h(Normal)	0.82MPa (Gauge)	研究用	某公立研究機関
2012年10月	5m ³ /h(Normal)	0.4MPa (Gauge)	FC開発	某社
2013年7月	5m ³ /h(Normal)	0.4MPa (Gauge)	FC開発	某社
2013年7月	5m ³ /h(Normal)	0.4MPa (Gauge)	半導体製造	電子部品Bメーカー

納入時期	水素ガス発生量	水素ガス発生圧力	使 用 目 的	納入先
2013年8月	5m ³ /h(Normal)	0.82MPa (Gauge)	研究用	某公立研究機関
2013年12月	10m ³ /h(Normal)	0.82MPa (Gauge)	FC開発	某社
2013年12月	1m³/h(Normal)	0.7MPa(Gauge)	研究用	某研究機関
2014年3月	20m³/h (Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2014年9月	1m ³ /h(Normal) ×2ユニット	0.82MPa (Gauge)	FC開発	某社
2014年12月	10 m ³ /h(Normal)	0.4MPa (Gauge)	金属還元用	某鉄鋼メーカー
2015年2月	1m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	エネルギー活用実証	某社
2015年2月	1m ³ /h (Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2015年3月	10 m ³ /h(Normal)	0.4MPa (Gauge)	エネルギー活用実証	某社
2015年3月	5m ³ /h(Normal)	0.4MPa (Gauge)	金属熱処理用	金属部品Aメーカー
2015年3月	1m ³ /h (Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2015年12月	1m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	エネルギー活用実証	某社
2015年12月	1m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	FC開発	某社
2015年12月	1m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2016年1月	10m ³ /h(Normal)	0.82MPa (Gauge)	半導体開発	某研究機関
2016年2月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2016年3月	5m ³ /h (Normal)	0.82MPa (Gauge)	半導体製造	某半導体メーカー
2016年7月	5m³/h(Normal)	0.4MPa (Gauge)	半導体製造	某半導体メーカー
2016年11月	5m ³ /h (Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2016年11月	1m³/h(Normal)	0.82MPa (Gauge)	製品開発·試作用	某社
2016年11月	1m³/h (Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2016年12月	1m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	製品開発∙試作用	某社
2017年1月	10m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2017年1月	1m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某研究機関
2017年1月	1m ³ /h(Normal)	0.82MPa (Gauge)	電子デバイス開発	某社
2017年2月	20m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社

納入時期	水素ガス発生量	水素ガス発生圧力	使 用 目 的	納入先
2017年2月	5m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2017年3月	5m ³ /h(Normal)	0.82MPa (Gauge)	電子デバイス開発	某研究機関
2017年4月	5m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2017年4月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2017年4月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2017年5月	1m³/h(Normal)	0.82MPa (Gauge)	電子デバイス開発	某研究機関
2017年5月	5m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某研究機関
2017年9月	5m ³ /h(Normal)	0.4MPa(Gauge)	金属製品製造	某金属部品メーカー
2017年9月	1m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	エネルギー活用実証	某社
2017年12月	5m ³ /h(Normal)	0.4MPa (Gauge)	エネルギー活用実証	某社
2018年2月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2018年2月	1m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某機械メーカー
2018年3月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某大学
2018年3月	10m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2018年3月	1m³/h(Normal)	0.82MPa (Gauge)	研究用	某社
2018年6月	5m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2018年6月	10m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2018年10月	1m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2018年11月	1m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2019年1月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2019年1月	5m ³ /h(Normal)	0.82MPa (Gauge)	半導体製造	某半導体メーカー
2019年2月	5m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2019年3月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某大学
2019年3月	5m ³ /h(Normal)	0.82MPa (Gauge)	FC開発	某社
2019年3月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2019年4月	5m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社

納入時期	水素ガス発生量	水素ガス発生圧力	使 用 目 的	納入先
2019年6月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某機械メーカー
2019年6月	1m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	エネルギー活用実証	某社
2019年8月	1m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	エネルギー活用実証	某社
2019年10月	5m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2020年2月	10m ³ /h(Normal)	0.82MPa (Gauge)	FC開発	某研究機関
2020年3月	5m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2020年3月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2020年6月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2020年8月	5m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	金属熱処理用	熱処理会社A
2020年9月	10m ³ /h(Normal)	0.82MPa (Gauge)	半導体開発用	半導体装置会社
2020年10月	5m ³ /h(Normal)	0.82MPa (Gauge)	FC開発	某社
2020年12月	20m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用	某社
2020年12月	10m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2021年3月	5m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用	某社
2021年3月	1m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2021年3月	5m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用研究	某社
2021年7月	30m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用	エネルギー会社A
2021年7月	5m ³ /h (Normal)	0.82MPa (Gauge)	FC開発	某社
2021年8月	10m ³ /h(Normal)	0.82MPa (Gauge)	半導体開発用	半導体装置会社
2021年8月	5m ³ /h(Normal)	0.82MPa (Gauge)	研究用	某社
2021年9月	10m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2021年10月	5m ³ /h(Normal)	0.82MPa (Gauge)	FC開発	某社
2021年11月	1m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	エネルギー活用実証	某社
2021年11月	10m ³ /h(Normal)	0.82MPa (Gauge)	FC開発	某社
2021年12月	5m ³ /h(Normal)	0.82MPa (Gauge)	電子材料製造	某化学メーカー
2022年1月	10m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用	某社

納入時期	水素ガス発生量	水素ガス発生圧力	使 用 目 的	納入先
2022年2月	10m³/h(Normal)	0.82MPa (Gauge)	研究用	某公立研究機関
2022年8月	5m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用	某社
2022年10月	5m ³ /h (Normal)	0.82MPa (Gauge)	ガス製造用	某社
2022年12月	50m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2023年2月	50m³/h(Normal) ×2ユニット	0.82MPa (Gauge)	エネルギー活用	エネルギー会社A
2023年2月	1m³/h(Normal) × 3ユニット	0.82MPa (Gauge)	観測用	某社
2023年3月	5m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2023年5月	5m³/h(Normal)	0.82MPa (Gauge)	FC開発	某社
2023年6月	10m ³ /h(Normal)	0.82MPa (Gauge)	半導体開発用	半導体装置会社
2023年7月	1m ³ /h (Normal)	0.82MPa (Gauge)	研究用	某社
2023年7月	5m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2023年11月	5m³/h(Normal)	0.82MPa (Gauge)	化学品製造	某社
2023年11月	5m³/h(Normal)	0.82MPa (Gauge)	水素ステーション	地方自治体
2023年12月 (予定)	20m³/h(Normal)	0.82MPa (Gauge)	半導体開発用	半導体装置会社
2024年2月 (予定)	20m³/h(Normal)	0.82MPa (Gauge)	メタネーション	某社
2024年2月 (予定)	20m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2024年3月 (予定)	80m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	エネルギー会社A
2024年3月 (予定)	5m³/h (Normal)	0.82MPa (Gauge)	半導体製造	某半導体メーカー
2024年3月 (予定)	10m³/h(Normal)	0.82MPa (Gauge)	半導体製造	某半導体メーカー
2024年7月 (予定)	5m³/h(Normal)	0.82MPa (Gauge)	エネルギー活用	某社
2024年9月 (予定)	100m ³ /h(Normal)	0.82MPa (Gauge)	水素ボイラー	某社
2024年12月 (予定)	10m ³ /h(Normal)	0.82MPa (Gauge)	エネルギー活用実証	某社
2025年6月 (予定)	50m ³ /h (Normal)	0.82MPa (Gauge)	金属熱処理用	地方自治体
2025年6月 (予定)	100m³/h(Normal)	0.82MPa (Gauge)	金属熱処理用	地方自治体